Skip to main content

Advertisement

Log in

Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To determine the distribution of clinically important CYP2C genotypes and allele frequencies in healthy Nordic populations with special focus on linkage disequilibrium.

Methods

A total of 896 healthy subjects from three Nordic populations (Danish, Faroese, and Norwegian) were genotyped for five frequent and clinically important CYP2C allelic variants: the defective CYP2C8*3, CYP2C9*2, CYP2C9*3, and CYP2C19*2 alleles, and the CYP2C19*17 allele that causes rapid drug metabolism. Linkage disequilibrium was evaluated and CYP2C haplotypes were inferred in the entire population.

Results

Ten CYP2C haplotypes were inferred, the most frequent of which (49%) was the CYP2C wildtype haplotype carrying CYP2C8*1, CYP2C9*1, and CYP2C19*1. The second most frequent haplotype (19%) is composed of CYP2C19*17, CYP2C8*1, and CYP2C9*1. This predicted haplotype accounts for 99.7% of the CYP2C19*17 alleles found in the 896 subjects.

Conclusion

CYP2C19*17 is a frequent genetic variant in Nordic populations that exists in strong linkage disequilibrium with wildtype CYP2C8*1 and CYP2C9*1 alleles, which effectively makes it a determinant for a haplotype exhibiting an efficient CYP2C substrate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ingelman-Sundberg M (2004) Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369:89–104

    Article  CAS  PubMed  Google Scholar 

  2. Niwa T, Murayama N, Yamazaki H (2009) Oxidation of endobiotics mediated by xenobiotic-metabolizing forms of human cytochrome P450. Curr Drug Metab 10:700–712

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein JA, de Morais SM (1994) Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4:285–299

    Article  CAS  PubMed  Google Scholar 

  4. Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52:349–355

    Article  CAS  PubMed  Google Scholar 

  5. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    Article  CAS  PubMed  Google Scholar 

  6. Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA (1991) Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 30:3247–3255

    Article  CAS  PubMed  Google Scholar 

  7. Totah RA, Rettie AE (2005) Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 77:341–352

    Article  CAS  PubMed  Google Scholar 

  8. http://www.cypalleles.ki.se/cyp2c8.htm accessed in June 2010

  9. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11:597–607

    Article  CAS  PubMed  Google Scholar 

  10. Bergmann TK, Vach W, Gréen H, Karlsson MO, Friberg L, Nielsen F, Pedersen RS, Mirza MR, Brasch-Andersen C, Brosen K (2010) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J doi:10.1038/tpj.2010.19

    PubMed  Google Scholar 

  11. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  CAS  PubMed  Google Scholar 

  12. http://www.cypalleles.ki.se/cyp2c9.htm accessed in June 2010

  13. King BP, Khan TI, Aithal GP, Kamali F, Daly AK (2004) Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics 14:813–822

    Article  CAS  PubMed  Google Scholar 

  14. Pedersen RS, Verstuyft C, Becquemont L, Jaillon P, Brøsen K (2004) Cytochrome P4502C9 (CYP2C9) genotypes in a Nordic population in Denmark. Basic Clin Pharmacol Toxicol 94:151–152

    Article  CAS  PubMed  Google Scholar 

  15. http://www.cypalleles.ki.se/cyp2c19.htm accessed in June 2010

  16. Wilkinson GR, Guengerich FP, Branch RA (1989) Genetic polymorphism of S-mephenytoin hydroxylation. Pharmacol Ther 43:53–76

    Article  CAS  PubMed  Google Scholar 

  17. De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  18. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, Ingelman-Sundberg M (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113

    Article  CAS  PubMed  Google Scholar 

  19. Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-Sundberg M, Eliasson E, Bertilsson L (2008) Increased omeprazole metabolism in carriers of the CYP2C19*17 allele: a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 65:767–774

    Article  CAS  PubMed  Google Scholar 

  20. Ohlsson Rosenborg S, Mwinyi J, Andersson M, Baldwin RM, Pedersen RS, Sim SC, Bertilsson L, Ingelman-Sundberg M, Eliasson E (2008) Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol 64:1175–1179

    Article  CAS  PubMed  Google Scholar 

  21. Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, Morath T, Schömig A, von Beckerath N, Kastrati A (2010) Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121:512–518

    Article  CAS  PubMed  Google Scholar 

  22. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E (2008) Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 83:322–327

    Article  CAS  PubMed  Google Scholar 

  23. Ahmadi KR, Weale ME, Xue ZY, Soranzo N, Yarnall DP, Briley JD, Maruyama Y, Kobayashi M, Wood NW, Spurr NK, Burns DK, Roses AD, Saunders AM, Goldstein DB (2005) A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat Genet 37:84–89

    Article  CAS  PubMed  Google Scholar 

  24. Walton R, Kimber M, Rockett K, Trafford C, Kwiatkowski D, Sirugo G (2005) Haplotype block structure of the cytochrome P450 CYP2C gene cluster on chromosome 10. Nat Genet 37:915–916

    Article  CAS  PubMed  Google Scholar 

  25. Yasar U, Lundgren S, Eliasson E, Bennet A, Wiman B, de Faire U, Rane A (2002) Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun 299:25–28

    Article  CAS  PubMed  Google Scholar 

  26. Mamiya K, Ieiri I, Miyahara S, Imai J, Furuumi H, Fukumaki Y, Ninomiya H, Tashiro N, Yamada H, Higuchi S (1998) Association of polymorphisms in the cytochrome P450 (CYP) 2C19 and 2C18 genes in Japanese epileptic patients. Pharmacogenetics 8:87–90

    Article  CAS  PubMed  Google Scholar 

  27. Halling J, Petersen MS, Damkier P, Nielsen F, Grandjean P, Pál W, Lundgren S, Lundblad MS, Brøsen K (2005) Polymorphisms of CYP2D6, CYP2C19, CYP2C9, CYP2C8 in the Faroese population. Eur J Clin Pharmacol 61:491–497

    Article  CAS  PubMed  Google Scholar 

  28. Heimdal K, Andersen TI, Skrede M, Fosså SD, Berg K, Børresen AL (1995) Association studies of estrogen receptor polymorphisms in a Norwegian testicular cancer population. Cancer Epidemiol Biomarkers Prev 4(2):123–126

    CAS  PubMed  Google Scholar 

  29. Tefre T, Daly AK, Armstrong M, Leathart JB, Idle JR, Brøgger A, Børresen AL (1994) Genotyping of the CYP2D6 gene in Norwegian lung cancer patients and controls. Pharmacogenetics 4(2):47–57

    Article  CAS  PubMed  Google Scholar 

  30. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  31. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  Google Scholar 

  32. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  CAS  PubMed  Google Scholar 

  33. Ramsjö M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh HK, Bertilsson L (2010) CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol doi:10.1007/s00228-010-0835-0

    Google Scholar 

  34. Ragia G, Arvanitidis KI, Tavridou A, Manolopoulos VG (2009) Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece. Pharmacogenomics 10:43–49

    Article  CAS  PubMed  Google Scholar 

  35. Miura J, Obua C, Abbo C, Kaneko S, Tateishi T (2009) Cytochrome P450 2C19 genetic polymorphisms in Ugandans. Eur J Clin Pharmacol 65:319–320

    Article  PubMed  Google Scholar 

  36. Sugimoto K, Uno T, Yamazaki H, Tateishi T (2008) Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 65:437–439

    Article  CAS  PubMed  Google Scholar 

  37. Justenhoven C, Hamann U, Pierl CB, Baisch C, Harth V, Rabstein S, Spickenheuer A, Pesch B, Brüning T, Winter S, Ko YD, Brauch H (2009) CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat 115:391–396

    Article  CAS  PubMed  Google Scholar 

  38. Gawrońska-Szklarz B, Siuda A, Kurzawski M, Bielicki D, Marlicz W, Droździk M (2010) Effects of CYP2C19, MDR1, and interleukin 1-B gene variants on the eradication rate of Helicobacter pylori infection by triple therapy with pantoprazole, amoxicillin, and metronidazole. Eur J Clin Pharmacol 66:681–687

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from The Swedish Research Council, Torsten and Ragnar Söderbergs Stiftelser, Karolinska Institutet, The Danish Research Council for Health and Disease, and The Lundbeck Foundation. We thank Pernille Jordan for analytical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus S. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, R.S., Brasch-Andersen, C., Sim, S.C. et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol 66, 1199–1205 (2010). https://doi.org/10.1007/s00228-010-0864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0864-8

Keywords

Navigation