Skip to main content
Log in

Transcriptome sequencing and microsatellite marker discovery in Ailanthus altissima (Mill.) Swingle (Simaroubaceae)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ailanthus altissima Swingle, is a tree species native to East Asia and has a great potential in decorative, bioenergy and industrial applications in many countries. To date, despite its commercial importance, the genomic and genetic resources available for this species are still insufficient. In this study, we characterized the transcriptome of A. altissima and developed thirteen EST-SSRs (expressed sequence tag-simple sequence repeats) based on Illumina paired-end RNA sequencing (RNA-seq). Besides, we developed ten polymorphic chloroplast microsatellite (cpSSR) markers using the available chloroplast genome of A. altissima. The transcriptome data produced 87,797 unigenes, of which 64,891 (73.91%) unigenes were successfully annotated in at least one protein database. For cpSSR markers the number of detected alleles (N) per marker varied from three at cpSSR12 to twelve at cpSSR8, the unbiased haploid diversity indices (uh) varied from 0.111 to 0.485, and haploid diversity indices (h) ranged from 0.101 to 0.444 with an average unbiased haploid diversity index (uh) of 0.274. Overall, a total of 65 different cpSSR alleles were identified at the ten loci among 165 individuals of A. altissima. The allele number per locus for EST-SSRs varied from 2.143 to 9.357, and the values of observed and expected heterozygosity ranged from 0.312 to 1.000 and 0.505 to 0.826, respectively. The molecular markers developed in this study will facilitate future genetic diversity, population structure, long distance-gene transfer and pollen-based gene flow analyses of A. altissima populations from its known distribution ranges in China focusing on planted and natural forest stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu SY (1979) Ailanthus. Arnoldia 39(2):29–50

    Google Scholar 

  2. Kowarik I, Säumel I (2007) Biological flora of central Europe: Ailanthus altissima (Mill) swingle. Perspect Plant Ecol Evol Syst 8(4):207–237. https://doi.org/10.1016/j.ppees.2007.03.002

    Article  Google Scholar 

  3. Miller JH (1990) Ailanthus altissima (Mill.) Swingle Ailanthus. Silvics North Am 2:101–104

    Google Scholar 

  4. Wickert KL, O’Neal ES, Davis DD, Kasson MT (2017) Seed production, viability, and reproductive limits of the invasive Ailanthus altissima (Tree-of-Heaven) within invaded environments. Forests 8(7):226. https://doi.org/10.3390/f80702264

    Article  Google Scholar 

  5. Chokkalingam U (2006) Learning lessons from China's forest rehabilitation efforts: national level review and special focus on Guangdong Province. CIFOR

  6. Enescu C (2014) The role of tree-of-heaven in forest land reclamation: a Brief. J Horticult, Forestry Biotechnol 18(2):66–69

    Google Scholar 

  7. Zhang J (2014) Coastal saline soil rehabilitation and utilization based on forestry approaches in China. Springer

  8. Kowarik I, Böcker R (1984) Zur Verbreitung, Vergesellschaftung und Einbürgerung des Götterbaumes (Ailanthus altissima [Mill.] Swingle) in Mitteleuropa. Tuexenia 4

  9. Constán-Nava S, Bonet A, Pastor E, Lledó MJ (2010) Long-term control of the invasive tree Ailanthus altissima: insights from mediterranean protected forests. For Ecol Manage 260(6):1058–1064. https://doi.org/10.1016/j.foreco.2010.06.030

    Article  Google Scholar 

  10. Ranieri E, Fratino U, Petrella A, Torretta V, Rada EC (2016) Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil. Environ Sci Pollut Res 23(16):15983–15989. https://doi.org/10.1007/s11356-016-6804-0

    Article  CAS  Google Scholar 

  11. Hoseini S, Najafi G, Ghobadian B, Mamat R, Ebadi M, Yusaf T (2018) Ailanthus altissima (tree of heaven) seed oil: characterisation and optimisation of ultrasonication-assisted biodiesel production. Fuel 220:621–630. https://doi.org/10.1016/j.fuel.2018.01.094

    Article  CAS  Google Scholar 

  12. Hoseini S, Najafi G, Ghobadian B, Mamat R, Ebadi M, Yusaf T (2018) Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renewa Energy 125:283–294. https://doi.org/10.1016/j.renene.2018.02.104

    Article  CAS  Google Scholar 

  13. Landenberger RE, Kota NL, McGraw JB (2007) Seed dispersal of the non-native invasive tree Ailanthus altissima into contrasting environments. Plant Ecol 192(1):55–70. https://doi.org/10.1007/s11258-006-9226-0

    Article  Google Scholar 

  14. Säumel I, Kowarik I (2010) Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landscape Urban Plann 94(3–4):244–249. https://doi.org/10.1016/j.landurbplan.2009.10.009

    Article  Google Scholar 

  15. Rebbeck J, Jolliff J (2018) How long do seeds of the invasive tree, Ailanthus altissima remain viable? For Ecol Manage 429:175–179. https://doi.org/10.1016/j.foreco.2018.07.001

    Article  Google Scholar 

  16. Little S (1974) Ailanthus altissima (Mill.) Swingle-Ailanthus. Agric Handb US Dep Agric

  17. Kowarik I (1995) Clonal growth in Ailanthus altissima on a natural site in West Virginia. J Veg Sci 6(6):853–856. https://doi.org/10.2307/3236399

    Article  Google Scholar 

  18. Knüsel S, Conedera M, Zweifel R, Bugmann H, Etzold S, Wunder J (2019) High growth potential of Ailanthus altissima in warm and dry weather conditions in novel forests of southern Switzerland. Trees 33(2):395–409. https://doi.org/10.1007/s00468-018-1785-x

    Article  CAS  Google Scholar 

  19. Petruzzellis F, Peng G, Tyree MT, Tonet V, Savi T, Torboli V, Pallavicini A, Bacaro G, Nardini A (2019) Plasticity of functional traits of tree of heaven is higher in exotic than in native habitats. Trees 33(2):411–420. https://doi.org/10.1007/s00468-018-1787-8

    Article  Google Scholar 

  20. Carter WK, Fredericksen TS (2007) Tree seedling and sapling density and deer browsing incidence on recently logged and mature non-industrial private forestlands in Virginia, USA. For Ecol Manage 242(2–3):671–677. https://doi.org/10.1016/j.foreco.2007.01.086

    Article  Google Scholar 

  21. Mousavi F, Majd A, Shahali Y, Ghahremaninejad F, Shoormasti RS, Pourpak Z (2017) Immunoproteomics of tree of heaven (Ailanthus atltissima) pollen allergens. J Proteomics 154:94–101. https://doi.org/10.1016/j.jprot.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  22. Dallas JF, Leitch MJ, Hulme PE (2005) Microsatellites for tree of heaven (Ailanthus altissima). Mol Ecol Res 5(2):340–342. https://doi.org/10.1111/j.1471-8286.2005.00920.x

    Article  CAS  Google Scholar 

  23. Neophytou C, Torutaeva E, Winter S, Meimberg H, Hasenauer H, Curto M (2018) Analysis of microsatellite loci in tree of heaven (Ailanthus altissima (Mill.) Swingle) using SSR-GBS. Tree Genet Genom 14(6):82. https://doi.org/10.1007/s11295-018-1295-4

    Article  Google Scholar 

  24. Aldrich PR, Briguglio JS, Kapadia SN, Morker MU, Rawal A, Kalra P, Huebner CD, Greer GK (2010) Genetic structure of the invasive tree Ailanthus altissima in eastern United States cities. J Bot 2010:1–9. https://doi.org/10.1155/2010/795735

    Article  Google Scholar 

  25. Brusa A, Holzapfel C (2018) Population structure of Ailanthus altissima (Simaroubaceae): The role of land-use history and management1. The J Torrey Botan Soc 145(1):55–69. https://doi.org/10.3159/TORREY-D-17-00012.1

    Article  Google Scholar 

  26. Chuman M, Kurokochi H, Saito Y, Ide Y (2015) Expansion of an invasive species, Ailanthus altissima, at a regional scale in Japan. J Ecol Environ 38:47–56

    Article  Google Scholar 

  27. Kurokochi H, Saito Y, Chuman M, Ide Y (2012) Low chloroplast diversity despite phylogenetically divergent haplotypes in Japanese populations of Ailanthus altissima (Simaroubaceae). Botany 91(3):148–154. https://doi.org/10.1139/cjb-2012-0159

    Article  Google Scholar 

  28. Kurokochi H, Saito Y, Ide Y (2014) Genetic structure of the introduced heaven tree (Ailanthus altissima) in Japan: evidence for two distinct origins with limited admixture. Botany 93(3):133–139

    Article  Google Scholar 

  29. Neophytou C, Pötzelsberger E, Curto M, Meimberg H, Hasenauer H (2019) Population bottlenecks have shaped the genetic variation of Ailanthus altissima (Mill) Swingle in an area of early introduction. Forestry: Int J Forest Res. https://doi.org/10.1093/forestry/cpz019

    Article  Google Scholar 

  30. Gu X, Zou Y, Huang W, Shen L, Arendsee Z, Su Z (2013) Phylogenomic distance method for analyzing transcriptome evolution based on RNA-seq data. Genome Biol Evolution 5(9):1746–1753. https://doi.org/10.1093/gbe/evt121

    Article  CAS  Google Scholar 

  31. Jiang Q, Wang F, Tan HW, Li MY, Xu ZS, Tan GF, Xiong AS (2015) De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol Genet Genomics 290(2):671–683. https://doi.org/10.1007/s00438-014-0953-y

    Article  CAS  PubMed  Google Scholar 

  32. Rai A, Yamazaki M, Takahashi H, Nakamura M, Kojoma M, Suzuki H, Saito K (2016) RNA-seq transcriptome analysis of Panax japonicus, and its comparison with other Panax species to identify potential genes involved in the saponins biosynthesis. Fronti Plant Sci 7:481. https://doi.org/10.3389/fpls.2016.00481

    Article  Google Scholar 

  33. Ding Y, Xue L, Guo RX, Luo GJ, Song YT, Lei JJ (2019) De Novo assembled transcriptome analysis and identification of genic ssr markers in red-flowered strawberry. Biochem Genet 57(5):607–622. https://doi.org/10.1007/s10528-019-09912-6

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Gong X, Jin L, Li H, Lu J, Duan J, Ma L (2019) Correction to: Development and validation of EST-SSR markers of Magnolia wufengensis using de novo transcriptome sequencing. Trees 33:1213–1223. https://doi.org/10.1007/s00468-019-01870-1

    Article  CAS  Google Scholar 

  35. Taheri S, Lee Abdullah T, Yusop M, Hanafi M, Sahebi M, Azizi P, Shamshiri R (2018) Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23(2):399. https://doi.org/10.3390/molecules23020399

    Article  CAS  PubMed Central  Google Scholar 

  36. Li N, Zheng YQ, Ding HM, Li HP, Peng HZ, Jiang B, Li HB (2018) Development and validation of SSR markers based on transcriptome sequencing of Casuarina equisetifolia. Trees 32(1):41–49. https://doi.org/10.1007/s00468-017-1607-6

    Article  CAS  Google Scholar 

  37. Dervishi A, Jakše J, Ismaili H, Javornik B, Štajner N (2018) Comparative assessment of genetic diversity in Albanian olive (Olea europaea L) using SSRs from anonymous and transcribed genomic regions. Tree Genet Genom 14(4):53. https://doi.org/10.1007/s11295-018-1269-6

    Article  Google Scholar 

  38. Dong M, Wang Z, He Q, Zhao J, Fan Z, Zhang J (2018) Development of EST-SSR markers in Larix principis-rupprechtii Mayr and evaluation of their polymorphism and cross-species amplification. Trees 32(6):1559–1571. https://doi.org/10.1007/s00468-018-1733-9

    Article  CAS  Google Scholar 

  39. Tautz D (1989) Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16):6463–6471. https://doi.org/10.1093/nar/17.16.6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981. https://doi.org/10.1101/gr.10.7.967

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morgante M, Olivieri A (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3(1):175–182. https://doi.org/10.1046/j.1365-313X.1993.t01-9-00999.x

    Article  CAS  PubMed  Google Scholar 

  42. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238. https://doi.org/10.1007/BF00564200

    Article  CAS  Google Scholar 

  43. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200. https://doi.org/10.1038/ng822

    Article  CAS  PubMed  Google Scholar 

  44. Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4(2):1. https://doi.org/10.1186/gb-2003-4-2-r13

    Article  Google Scholar 

  45. Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M (2014) Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L) P Beauv]. BMC Genomics 15(1):1. https://doi.org/10.1186/1471-2164-15-78

    Article  CAS  Google Scholar 

  46. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16(3):142–147. https://doi.org/10.1016/S0169-5347(00)02097-8

    Article  CAS  PubMed  Google Scholar 

  47. Ebert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resources 9(3):673–690. https://doi.org/10.1111/j.1755-0998.2008.02319.x

    Article  CAS  Google Scholar 

  48. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet 106(3):411–422. https://doi.org/10.1007/s00122-002-1031-0

    Article  CAS  PubMed  Google Scholar 

  49. Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L). BMC Genomics 11(1):1. https://doi.org/10.1186/1471-2164-11-569

    Article  CAS  Google Scholar 

  50. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  54. Saina JK, Li ZZ, Gichira AW, Liao YY (2018) The complete chloroplast genome sequence of tree of heaven (Ailanthus altissima (Mill)(Sapindales: Simaroubaceae), an important pantropical tree. Int J Mol Sci. 19:929. https://doi.org/10.3390/ijms19040929

    Article  CAS  PubMed Central  Google Scholar 

  55. Li ZZ, Lu MX, Saina JK, Gichira AW, Wang QF, Chen JM (2017) Development and characterization of EST-SSR markers for ottelia acuminata var jingxiensis (Hydrocharitaceae). Appl Plant Sci 5(11):4. https://doi.org/10.3732/apps.1700083s

    Article  Google Scholar 

  56. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res. https://doi.org/10.1093/nar/gks596

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peakall R, Smouse PE (2012) GenAlEx 6 5: genetic analysis in excel population genetic software for teaching and research-an update. Bioinformatics 28(19):2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  59. Eliades N, Eliades D (2009) Haplotype analysis: software for analysis of haplotype data. Genetics and Forest Tree Breeding, Georg-August University Goettingen, Forest Goettingen (Germany)

    Google Scholar 

  60. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  61. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rambaut A (2014) Figtree 1.4. 2 software. Institute of Evolutionary Biology, Univ. Edinburgh.

  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959. https://doi.org/10.1534/genetics.116.195164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Earl DA, Vonholdt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Gen Res 4(2):359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  65. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  66. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  67. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  68. Zhang X, Zhang Y, Wang YH, Shen SK (2018) Transcriptome analysis of Cinnamomum chago: a revelation of candidate genes for abiotic stress response and terpenoid and fatty acid biosyntheses. Front Genet 9:505. https://doi.org/10.3389/fgene.2018.00505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma S, Dong W, Lyu T, Lyu Y (2019) An RNA sequencing transcriptome analysis and development of EST-SSR markers in Chinese hawthorn through Illumina sequencing. Forests 10(2):82. https://doi.org/10.3390/f10020082

    Article  Google Scholar 

  70. Liu FM, Hong Z, Yang ZJ, Zhang NN, Liu XJ, Xu DP (2019) De novo transcriptome analysis of Dalbergia odorifera and transferability of SSR markers developed from the transcriptome. Forests 10(2):98. https://doi.org/10.3390/f10020098

    Article  Google Scholar 

  71. Sladonja B, Susek M, Guillermic J (2015) Review on invasive tree of heaven (Ailanthus altissima (Mill) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environ Manage 56(4):1009–1034. https://doi.org/10.1007/s00267-015-0546-5

    Article  PubMed  Google Scholar 

  72. Deng K, Deng R, Fan J, Chen E (2018) Transcriptome analysis and development of simple sequence repeat (SSR) markers in Zingiber striolatum Diels. Physiol Mol Biol Plants 24(1):125–134. https://doi.org/10.1007/s12298-017-0485-0

    Article  CAS  PubMed  Google Scholar 

  73. Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L) and Arachis wild species. BMC Plant Biol 9(1):35. https://doi.org/10.1186/1471-2229-9-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumpatla SP, Mukhopadhyay S (2005) Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome 48(6):985–998. https://doi.org/10.1139/g05-060

    Article  CAS  PubMed  Google Scholar 

  75. Zhu S, Ding Y, Yap Z, Qiu Y (2016) De novo assembly and characterization of the floral transcriptome of an economically important tree species, Lindera glauca (Lauraceae), including the development of EST-SSR markers for population genetics. Mol Biol Rep 43(11):1243–1250. https://doi.org/10.1007/s11033-016-4056-1

    Article  CAS  PubMed  Google Scholar 

  76. Yu HH, Yang ZL, Sun B, Liu RN (2011) Genetic diversity and relationship of endangered plant Magnolia officinalis (Magnoliaceae) assessed with ISSR polymorphisms. Biochem Syst Ecol 39(2):71–78. https://doi.org/10.1016/j.bse.2010.12.003

    Article  CAS  Google Scholar 

  77. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55. https://doi.org/10.1016/j.tibtech.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  78. Rungis D, Berube Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat markers for spruce (Picea spp) from expressed sequence tags. Theor Appl Genet 109(6):1283–1294. https://doi.org/10.1007/s00122-004-1742-5

    Article  CAS  PubMed  Google Scholar 

  79. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119(1–2):39–43. https://doi.org/10.1023/a:1017537720475

    Article  CAS  Google Scholar 

  80. Breidenbach N, Gailing O, Krutovsky KV (2019) Development of novel polymorphic nuclear and chloroplast microsatellite markers in coast redwood (Sequoia sempervirens). Plant Genet Resour-Charact Util 17(3):293–297. https://doi.org/10.1017/s147926211800045x

    Article  CAS  Google Scholar 

  81. Muriira NG, Muchugi A, Yu AM, Xu JC, Liu AZ (2018) Genetic diversity analysis reveals genetic differentiation and strong population structure in Calotropis plants. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-26275-x

    Article  CAS  Google Scholar 

  82. Chmielewski M, Meyza K, Chybicki IJ, Dzialuk A, Litkowiec M, Burczyk J (2015) Chloroplast microsatellites as a tool for phylogeographic studies: the case of white Oaks in Poland. Iforest-Biogeosciences Forestry 8(6):765–771. https://doi.org/10.3832/ifor1597-008

    Article  Google Scholar 

  83. Liao YY, Guo YH, Chen JM, Wang QF (2014) Phylogeography of the widespread plant Ailanthus altissima (Simaroubaceae) in China indicated by three chloroplast DNA regions. J Syst Evol 52(2):175–185. https://doi.org/10.1111/jse.12065

    Article  Google Scholar 

  84. Deguilloux MF, Pemonge MH, Petit RJ (2004) Use of chloroplast microsatellites to differentiate Oak populations. Ann For Sci 61:825–830. https://doi.org/10.1051/forest:2004078

    Article  Google Scholar 

  85. Neophytou C, Michiels HG (2013) Upper rhine valley: a migration crossroads of middle European Oaks. For Ecol Manage 304:89–98. https://doi.org/10.1016/j.foreco.2013.04.020

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the National Natural Scientific Foundation of China (Grant No.31500457) and CAS-TWAS President’s Fellowship for International PhD Students for funding this project. The authors are also grateful for the comments of editor and of three anonymous reviewers, which improved the manuscript considerably.

Author information

Authors and Affiliations

Authors

Contributions

Y-YL conceived and designed the experiment; JK.S performed the experiments, analyzed data and wrote the first draft of the manuscript. Z-ZL assisted in data analysis, Y-YL, Z-ZL, AW.G and YM commented on previous versions of the manuscript. Y-YL and Z-ZL collected the plant materials. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yi-Ying Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 kb)

Supplementary file2 (DOCX 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saina, J.K., Li, ZZ., Mekbib, Y. et al. Transcriptome sequencing and microsatellite marker discovery in Ailanthus altissima (Mill.) Swingle (Simaroubaceae). Mol Biol Rep 48, 2007–2023 (2021). https://doi.org/10.1007/s11033-020-05402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05402-w

Keywords

Navigation