Skip to main content

Advertisement

Log in

In-depth genome diversity, population structure and linkage disequilibrium analysis of worldwide diverse safflower (Carthamus tinctorius L.) accessions using NGS data generated by DArTseq technology

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Safflower (Carthamus tinctorius L.) is one of the most important oilseed crops for its seed oil rich in unsaturated fatty acids. Precise utilization of diverse genetic resources is fundamental in breeding programs to improve high yield genotypes with desirable traits. In this study, for the first time we report successful application of DArTseq technology; an efficient genotyping-by-sequencing (NGS); to analysis genetic diversity and population structure of 89 safflower accessions from worldwide origins. Totally, 19,639 DArTseq markers (10,130 SilicoDArTs and 9509 SNPs) generated through DArTseq genotyping. After filtering the data, 3431 polymorphic DArTseq markers (1136 SilicoDArTs and 2295 SNPs) used for genetic diversity, population structure and linkage disequilibrium analysis in safflower genotypes. All the SilicoDArT and SNP markers showed high reproducibility and call rate. Polymorphism information content (PIC) values ranged from 0.1 to 0.5, while ≥ 0.50% of SilicoDArTs and ≥ 0.64% SNPs showed PIC values more than median. Genotypes grouping using DArTseq markers resulted in three distinct clusters. Results showed weak correlation between safflower diversity pattern and origins. Analysis of molecular variance revealed that the majority of genetic variation was attributed to the differences among varieties within cluster populations and there was no significant molecular variance between origins. However, safflower of accessions belonged to Iran, Turkey, Pakistan and India indeed appear to be genetically similar and grouped close in referred cluster, while the accessions from Near East (Afghanistan, China) being distinct. Our results were in agreement with hypothesis that safflower domesticated in somewhere west of Fertile Crescent and then expanded through Africa and Europe. Present study using a panel of globally diverse safflower accessions and large number of DArTseq markers set the stage for future analysis of safflower domestication using large germplasm from proposed domestication centers. Also, studied germplasm in this study can be used as a valuable source for future genomic studies in safflower for mapping desirable traits through genome-wide association mapping studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NGS:

Next generation sequencing

DArT:

Diversity array technology

SNP:

Single nucleotide polymorphism

DAPC:

Discriminant analysis of principal component

LD:

Linkage disequilibrium

References

  1. Asp ML, Collene AL, Norris LE, Cole RM, Stout MB, Tang SY, Hsu JC, Belury MA (2011) Time-dependent effects of safflower oil to improve glycemia, inflammation and blood lipids in obese, post-menopausal women with type 2 diabetes: a randomized, double-masked, crossover study. Clin Nutr 30:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar S, Ambreen H, Murali TV, Bali S, Agarwal M, Kumar A, Goel S, Jagannath A (2015) Assessment of genetic diversity and population structure in a global reference collection of 531 accessions of Carthamus tinctorius L. (Safflower) using AFLP markers. Plant Mol Biol Rep 33:1299–1313

    Article  Google Scholar 

  3. Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar S, Ambreen H, Variath MT, Rao AR, Agarwal M, Kumar A, Goel S, Jagannath A (2016) Utilization of molecular, phenotypic and geographical diversity to develop compact composite core collection in the oilseed crop, Safflower (Carthamus tinctorius L.) through maximization strategy. Front Plant Sci 7:1554

    PubMed  PubMed Central  Google Scholar 

  5. Norris LE, Collene AL, Asp ML, Hsu JC, Liu LF, Richardson JR, Li D, Bell D, Osei K, Jackson RD, Belury MA (2009) Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am J Clin Nutr 90:468–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knowles P, Ashri A (1995) Safflower—Carthamus Tinctorius (Compositae): In evolution of crop plants. Ed by Smartt J, Simmonds NW. Harlow, UK: Longman; p 47–50.

  7. Knowles PF (1969) Centers of plant diversity and conservation of crop germplasm- Safflower. Econ Bot 23(4):324–329

    Article  Google Scholar 

  8. Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163:21–30

    Article  CAS  Google Scholar 

  9. Khan MA, von Witzke-Ehbrecht S, Maass BL, Becker HC (2009) Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genet Resour Crop Evol 56:19–30

    Article  CAS  Google Scholar 

  10. Talebi R, Nosrati S, Etminan A, Naji AM (2018) Genetic diversity and population structure analysis of landrace and improved safflower (Cartamus tinctorious L.) germplasm using arbitrary functional gene-based molecular markers. Biotech Biotech Equip 32:1183–1194

    Article  CAS  Google Scholar 

  11. Golkar P, Mokhtari N (2018) Molecular diversity assessment of a world collection of safflower genotypes by SRAP and SCoT molecular markers. Physiol Mol Biol Plants 24(6):1261–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown AHD (1989) Core collections—a practical approach to genetic-resources management. Genome 31(2):818–824

    Article  Google Scholar 

  13. Johnson RC, Stout DM, Bradley VL (1993) "The US collection: a rich source of safflower germplasm", In: Dajue L, Yuanzhou H (eds) Proceedings of the third international safflower conference, Beijing: Beijing Botanical Garden; Institute of Botany, Chinese Academy of Sciences, pp 202–208.

  14. Dwivedi SL, Upadhyaya HD, Hegde DM (2005) Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52:821–830

    Article  Google Scholar 

  15. Pearl SA, Burke JM (2014) Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop. Am J Bot 101:1640–1650

    Article  PubMed  Google Scholar 

  16. Golkar P, Arzani A, Rezaei AM (2011) Genetic variation in safflower (Carthamus tinctorious L.) for seed quality-related traits and inter-simple sequence repeat (ISSR) markers. Int J Mol Sci 12:2664–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kiran BU, Mukta N, Kadirvel P, Alivelu K, Senthilvel S, Kishore P, Varaprasad KS (2017) Genetic diversity of safflower (Carthamus tinctorius L.) germplasm as revealed by SSR markers. Plant Genet Resour 15(1):1–11

    Article  CAS  Google Scholar 

  18. Ambreen H, Kumar S, Kumar A, Agarwal M, Jagannath A, Goel S (2018) Association mapping for important agronomic traits in safflower (Carthamus tinctorius L.) core collection using microsatellite markers. Front Plant Sci 9:402

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alam M, Neal J, O’Connor K, Kilian A, Topp B (2018) Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in macadamia. PLoS ONE 13(8):e0203465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beattie WG, Meng L, Turner SL, Varma RS, Dao DD, Beattie KL (1995) Hybridization of DNA targets to glass-tethered oligonucleotide probes. Mol Biotechnol 4(3):213–225

    Article  CAS  PubMed  Google Scholar 

  22. Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 (Bethesda) 2(7):721–729

    Article  CAS  Google Scholar 

  23. Bowers JE, Pearl SA, Burke JM (2016) Genetic mapping of millions of SNPs in safflower (Carthamus tinctorius L) via Whole-Genome Resequencing. G3 (Bethesda) 6(7):2203–2211

    Article  Google Scholar 

  24. Truco MJ, Ashrafi H, Kozik A, van Leeuwen H, Bowers J, Wo SR, Stoffel K, Xu H, Hill T, Van Deynze A, Michelmore RW (2013) An ultra-high-density, transcript-based, genetic map of Lettuce. G3 (Bethesda) 3(4):617–631

    Article  CAS  Google Scholar 

  25. Chapman MA, Burke JM (2007) DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biol 7:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  27. Nadeem MA, Habyarimana E, Ciftci V, Nawaz MA, Karakoy T, Comertpay G, Shahid MQ, Hatipoğlu R, Yeken MZ, Ali F, Ercişli S, Gyuhwa Chung G, Baloch FS (2018) Characterization of genetic diversity in Turkish common bean gene pool using phenotypic and whole-genome DArTseq-generated silicoDArT marker information. PLoS ONE 13(10):e0205363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ates D, Asciogul TK, Nemli S, Erdogmus S, Esiyok D, Tanyolac MB (2018) Association mapping of days to flowering in common bean (Phaseolus vulgaris L.) revealed by DArT markers. Mol Breed 38:113

    Article  Google Scholar 

  29. Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynsk K, Jaccoud D, Hopper C, Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. Meth Mol Biol 888:67–89

    Article  Google Scholar 

  30. Edet OU, Gorafi YSA, Cho SW, Kishii M, Tsujimoto H (2018) Novel molecular marker-assisted strategy for production of wheat–Leymus mollis chromosome addition lines. Sci Rep 8:16117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ndjiondjop MN, Semagn K, Gouda AC, Kpeki SB, Dro Tia D, Sow M, Goungoulou A, Sie M, Perrier X, Ghesquiere A, Warburton ML (2017) Genetic variation and population structure of Oryza glaberrima and development of a mini-core collection using DArTseq. Front Plant Sci 8:1748

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pailles Y, Ho S, Pires IS, Tester M, Negrão S, Schmöckel SM (2017) Genetic diversity and population structure of two tomato species from the Galapagos Islands. Front Plant Sci 8:138

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zaitoun SYA, Jamous RM, Shtaya MJ, Mallah OB, Eid IS, Ali-Shtayeh MS (2018) Characterizing Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers. BMC Plant Biol 18:246

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128

    Article  CAS  Google Scholar 

  35. Talebi R (2008) An alternative strategy in rapid DNA extraction protocol for high throughput RAPD analysis in chickpea and its wild related species. J Appl Biol Sci 2(3):121–124

    CAS  Google Scholar 

  36. Monostori I, Szira F, Tondelli A, Arendas T, Gierczik K, Cattivelli L, Galiba G, Vagujfalvi A (2017) Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L.) collection. PLoS ONE 12(12):e0189265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baloch FS, Alsaleh A, Shahid MQ, Çiftçi V, Sáenz de Miera L, Aasim M, Nadeem MA, Aktas S, Ozkan H, Hatipoglu RA (2017) whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS ONE 12(1):e0167821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  39. Cruz VMV, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop lesquerella and related species. PLoS ONE 8:e64062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perrier X, Flori A, Bonnot F (2003) Data analysis methods: In: Hamon, P., Seguin, M., Perrier, X., Glaszmann, J.C. Genetic diversity of cultivated tropical plants. Science Publishers, Enfield, 43–76.

  41. Perrier X, Jacquemoud-Collet JP (2006) DARwin software, https://darwin.cirad.fr/darwin.

  42. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTU RE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  43. Earl DA, vonholdt BM, (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTU RE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  44. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  45. Core Team R (2014) R: a language and environment for statistical computing. R Core Team, Vienna

    Google Scholar 

  46. Nielsen NH, Backes G, Stougaard J, Andersen SU, Jahoor A (2014) Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS ONE 9:e94000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chapman MA, Hvala J, Strever J, Burke JM (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a Near Eastern origin and five centers of diversity. Am J Bot 97:831–840

    Article  CAS  PubMed  Google Scholar 

  48. Talebi R, Abhari SA (2016) Evaluation of genetic diversity in safflower (Carthamus tinctorius L.) using agro-morphological, fatty acid composition and ISSR molecular markers. Res J Biotech 11(7):19–27

    CAS  Google Scholar 

  49. Lee GA, Sung JS, Lee SY, Chung JW, Yi JY, Kim YY, Lee MC (2014) Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol Ecol Resour 14:69–78

    Article  CAS  PubMed  Google Scholar 

  50. Fayaz F, Aghaee M, Talebi R, Azadi A (2019) Genetic diversity and molecular characterization of Iranian durum wheat landraces (Triticum turgidum durum (Desf) Husn) using DArT markers. Biochem Genet 57:98–116

    Article  CAS  PubMed  Google Scholar 

  51. Wambugu PW, Ndjiondjop MN, Henry RJ (2018) Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct Genom 17:198–206

    Article  CAS  Google Scholar 

  52. Onda Y, Mochida K (2016) Exploring genetic diversity in plants using high-throughput sequencing techniques. Curr Genom 17:358–367

    Article  CAS  Google Scholar 

  53. Ashri A (1975) Evaluation of the germplasm collection of safflower, Carthamus tinctorius L. V. Distribution and regional divergence for morphological characters. Euphytica 24:651–659

    Article  Google Scholar 

  54. Pearl SA, Bowers JE, Reyes-Chin-Wo S, Michelmore RW, Burke JM (2014) Genetic analysis of safflower domestication. BMC Plant Biol 14:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Islamic Azad University, Sanandaj Branch, Iran and Sararood Dryland Agricultural Research Institute, Kermanshah, Iran.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Talebi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

No ethical issues were promulgated.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 List of SilicoDArT and SNP marker used in this study (XLSX 498 kb)

11033_2020_5312_MOESM2_ESM.xlsx

Supplementary file2 Kinship matrix for pairs of genotypes based on SilicoDArT and SNP marker calculated in TASSEL (XLSX 233 kb)

Supplementary file3 Genetic distance of genotypes based on SilicoDArT and SNP marker calculated in TASSEL (XLSX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, S.M.R., Talebi, R., Pourdad, S.S. et al. In-depth genome diversity, population structure and linkage disequilibrium analysis of worldwide diverse safflower (Carthamus tinctorius L.) accessions using NGS data generated by DArTseq technology. Mol Biol Rep 47, 2123–2135 (2020). https://doi.org/10.1007/s11033-020-05312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05312-x

Keywords

Navigation