Skip to main content
Log in

CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: considering Akt/GSK-3β and ERK signaling pathways

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 20 May 2020

This article has been updated

Abstract

The tissue-protective properties of erythropoietin (EPO) have been described in several neurodegenerative diseases models, but erythrocytosis following EPO treatment may lead to deleterious effects. Carbamylated erythropoietin, an EPO derivative lacking hematopoietic side effects, has shown protective properties in some studies. However, it is not known if CEPO protects primary hippocampal cells against Aβ25−35 toxicity. The present study aimed to investigate the effect of CEPO-Fc on biochemical alterations in Akt, GSK-3β, and ERK signaling and cell death induced by Aβ25−35 in isolated hippocampal cell culture. The embryonic hippocampal cells were obtained from 18–19 day rat embryos. The cells were exposed with Aβ25−35 (20 µM) in the absence or presence of CEPO-Fc (1 or 5 IU) and PI3k and ERK inhibitors. CEPO-Fc at the dose of 5 IU significantly prevented the cell loss and caspase-3 cleavage caused by Aβ25−35. Additionally, CEPO-Fc noticeably reversed Aβ mediated decrement of Akt and GSK-3β phosphorylation. With exposure to LY294002, PI3 kinase inhibitor, Akt phosphorylation diminished and CEPO-Fc protective effects disappeared. Furthermore, while CEPO-Fc nullified Aβ-induced increment of phospho-ERK, inhibition of ERK activity by PD98059, had no effect on Aβ25−35-mediated caspase-3 cleavage and cell toxicity. These results imply that protective effects of CEPO-Fc seem to be mainly exerted through the PI3K/Akt pathway rather than ERK signaling. This study suggested that CEPO-Fc prevents Aβ-induced cell toxicity as well as Akt/GSK-3β and ERK alterations in isolated hippocampal cells. These findings might provide a new perspective on CEPO-Fc protective properties as a prospective remedial factor for neurodegenerative diseases like AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 20 May 2020

    Unfortunately, the original version of this article contained a mistake in the arrangement of representative cell images in Fig.��2. In this figure, the same representative image for A�� group was mistakenly placed for A�����+���LY group. The corrected form of this figure is provided in this correction.

References

  1. Parihar M, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11(5):456–467

    Article  CAS  Google Scholar 

  2. Malchiodi-Albedi F, Domenici MR, Paradisi S, Bernardo A, Ajmone‐Cat MA, Minghetti L (2001) Astrocytes contribute to neuronal impairment in βA toxicity increasing apoptosis in rat hippocampal neurons. Glia 34(1):68–72

    Article  CAS  Google Scholar 

  3. Holscher C, Gengler S, Gault VA, Harriott P, Mallot HA (2007) Soluble beta-amyloid [25–35] reversibly impairs hippocampal synaptic plasticity and spatial learning. Eur J Pharmacol 561(1–3):85–90

    Article  CAS  Google Scholar 

  4. Behl C, Davis JB, Klier FG, Schubert D (1994) Amyloid β peptide induces necrosis rather than apoptosis. Brain Res 645(1–2):253–264

    Article  CAS  Google Scholar 

  5. Ivins KJ, Thornton PL, Rohn TT, Cotman CW (1999) Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol Dis 6(5):440–449

    Article  CAS  Google Scholar 

  6. Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. Eneuro.https://doi.org/10.1523/ENEURO.0149-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hooshmandi E, Ghasemi R, Iloun P, Moosavi M (2019) The neuroprotective effect of agmatine against amyloid β-induced apoptosis in primary cultured hippocampal cells involving ERK, Akt/GSK-3β, and TNF-α. Mol Biol Rep 46(1):489–496

    Article  CAS  Google Scholar 

  8. Hooshmandi E, Motamedi F, Moosavi M, Katinger H, Zakeri Z, Zaringhalam J, Maghsoudi A, Ghasemi R, Maghsoudi N (2018) CEPO-Fc (an EPO derivative) protects hippocampus against Aβ-induced memory deterioration: a behavioral and molecular study in a rat model of Aβ toxicity. Neuroscience 388:405–417

    Article  CAS  Google Scholar 

  9. Sasaki R (2003) Pleiotropic functions of erythropoietin. Intern Med 42(2):142–149

    Article  CAS  Google Scholar 

  10. Juul SE, Anderson DK, Li Y, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43(1):40–49. https://doi.org/10.1203/00006450-199804001-00243

    Article  CAS  PubMed  Google Scholar 

  11. Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76(1):105–116

    Article  CAS  Google Scholar 

  12. Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6(6):484–494. https://doi.org/10.1038/nrn1687

    Article  CAS  PubMed  Google Scholar 

  13. Castaneda-Arellano R, Beas-Zarate C, Feria-Velasco AI, Bitar-Alatorre EW, Rivera-Cervantes MC (2014) From neurogenesis to neuroprotection in the epilepsy: signalling by erythropoietin. Front Biosci 19:1445–1455

    Article  Google Scholar 

  14. Li G, Ma R, Huang C, Tang Q, Fu Q, Liu H, Hu B, Xiang J (2008) Protective effect of erythropoietin on beta-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci Lett 442(2):143–147. https://doi.org/10.1016/j.neulet.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Kirkeby A, Torup L, Bochsen L, Kjalke M, Abel K, Theilgaard-Monch K, Johansson PI, Bjorn SE, Gerwien J, Leist M (2008) High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO). Thromb Haemost 99(4):720–728. https://doi.org/10.1160/th07-03-0208

    Article  CAS  PubMed  Google Scholar 

  16. Piloto N, Teixeira HM, Teixeira-Lemos E, Parada B, Garrido P, Sereno J, Pinto R, Carvalho L, Costa E, Belo L, Santos-Silva A, Teixeira F, Reis F (2009) Erythropoietin promotes deleterious cardiovascular effects and mortality risk in a rat model of chronic sports doping. Cardiovasc Toxicol 9(4):201–210. https://doi.org/10.1007/s12012-009-9054-2

    Article  CAS  PubMed  Google Scholar 

  17. Montero M, Poulsen FR, Noraberg J, Kirkeby A, van Beek J, Leist M, Zimmer J (2007) Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures. Exp Neurol 204(1):106–117. https://doi.org/10.1016/j.expneurol.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  18. Coleman TR, Westenfelder C, Togel FE, Yang Y, Hu Z, Swenson L, Leuvenink HG, Ploeg RJ, d’Uscio LV, Katusic ZS, Ghezzi P, Zanetti A, Kaushansky K, Fox NE, Cerami A, Brines M (2006) Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities. Proc Natl Acad Sci USA 103(15):5965–5970. https://doi.org/10.1073/pnas.0601377103

    Article  CAS  PubMed  Google Scholar 

  19. Chamorro ME, Wenker SD, Vota DM, Vittori DC, Nesse AB (2013) Signaling pathways of cell proliferation are involved in the differential effect of erythropoietin and its carbamylated derivative. Biochim Biophys Acta 1833(8):1960–1968. https://doi.org/10.1016/j.bbamcr.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  20. Maltaneri RE, Chamorro ME, Schiappacasse A, Nesse AB, Vittori DC (2017) Differential effect of erythropoietin and carbamylated erythropoietin on endothelial cell migration. Int J Biochem Cell Biol 85:25–34. https://doi.org/10.1016/j.biocel.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  21. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305(5681):239–242

    Article  CAS  Google Scholar 

  22. Ding J, Li QY, Yu JZ, Wang X, Lu CZ, Ma CG, Xiao BG (2015) The lack of CD131 and the inhibition of Neuro-2a growth by carbamylated erythropoietin. Cell Biol Toxicol 31(1):29–38. https://doi.org/10.1007/s10565-015-9292-y

    Article  CAS  PubMed  Google Scholar 

  23. Sturm B, Helminger M, Steinkellner H, Heidari MM, Goldenberg H, Scheiber-Mojdehkar B (2010) Carbamylated erythropoietin increases frataxin independent from the erythropoietin receptor. Eur J Clin Invest 40(6):561–565. https://doi.org/10.1111/j.1365-2362.2010.02292.x

    Article  CAS  PubMed  Google Scholar 

  24. Armand-Ugon M, Aso E, Moreno J, Riera-Codina M, Sanchez A, Vegas E, Ferrer I (2015) Memory improvement in the AβPP/PS1 mouse model of familial Alzheimer’s disease induced by carbamylated-erythropoietin is accompanied by modulation of synaptic genes. J Alzheimer’s Dis 45(2):407–421. https://doi.org/10.3233/jad-150002

    Article  CAS  Google Scholar 

  25. Ghasemi R, Moosavi M, Zarifkar A, Rastegar K, Maghsoudi N (2015) The interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection in primary hippocampal cell culture. J Mol Neurosci 57(3):325–334. https://doi.org/10.1007/s12031-015-0622-6

    Article  CAS  PubMed  Google Scholar 

  26. Maurice T, Mustafa MH, Desrumaux C, Keller E, Naert G, de la Rodriguez Cruz CG-BM, Garcia Rodriguez Y (2013) Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ(2)(5)(-)(3)(5) non-transgenic mouse model of Alzheimer’s disease. J Psychopharmacol 27(11):1044–1057. https://doi.org/10.1177/0269881113494939

    Article  CAS  PubMed  Google Scholar 

  27. Schriebl K, Trummer E, Lattenmayer C, Weik R, Kunert R, Muller D, Katinger H, Vorauer-Uhl K (2006) Biochemical characterization of rhEpo-Fc fusion protein expressed in CHO cells. Protein Exp Purif 49(2):265–275. https://doi.org/10.1016/j.pep.2006.05.018

    Article  CAS  Google Scholar 

  28. Gurtu V, Kain SR, Zhang G (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251(1):98–102. https://doi.org/10.1006/abio.1997.2220

    Article  CAS  PubMed  Google Scholar 

  29. Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW (2001) Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Res 898(2):350–357

    Article  CAS  Google Scholar 

  30. Marin N, Romero B, Bosch-Morell F, Llansola M, Felipo V, Roma J, Romero FJ (2000) Beta-amyloid-induced activation of caspase-3 in primary cultures of rat neurons. Mech Ageing Dev 119(1–2):63–67

    Article  CAS  Google Scholar 

  31. Allen JW, Eldadah BA, Huang X, Knoblach SM, Faden AI (2001) Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. J Neurosci Res 65(1):45–53. https://doi.org/10.1002/jnr.1126

    Article  CAS  PubMed  Google Scholar 

  32. Xian YF, Mao QQ, Wu JC, Su ZR, Chen JN, Lai XP, Ip SP, Lin ZX (2014) Isorhynchophylline treatment improves the amyloid-beta-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation. J Alzheimer’s Dis 39(2):331–346. https://doi.org/10.3233/jad-131457

    Article  CAS  Google Scholar 

  33. Zhi-Kun S, Hong-Qi Y, Zhi-Quan W, Jing P, Zhen H, Sheng-Di C (2012) Erythropoietin prevents PC12 cells from beta-amyloid-induced apoptosis via PI3KAkt pathway. Transl Neurodegener 1(1):7. https://doi.org/10.1186/2047-9158-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma R, Hu J, Huang C, Wang M, Xiang J, Li G (2014) JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid beta-peptide Aβ25-35. Br J Pharmacol 171(13):3234–3245. https://doi.org/10.1111/bph.12672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95(8):4635–4640

    Article  CAS  Google Scholar 

  36. Ma BX, Li J, Li H, Wu SS (2015) Recombinant human erythropoietin protects myocardial cells from apoptosis via the janus-activated kinase 2/signal transducer and activator of transcription 5 pathway in rats with epilepsy. Curr Ther Res 77:90–98. https://doi.org/10.1016/j.curtheres.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  37. Martin D, Salinas M, Lopez-Valdaliso R, Serrano E, Recuero M, Cuadrado A (2001) Effect of the Alzheimer amyloid fragment Aβ(25–35) on Akt/PKB kinase and survival of PC12 cells. J Neurochem 78(5):1000–1008

    Article  CAS  Google Scholar 

  38. Kong J, Ren G, Jia N, Wang Y, Zhang H, Zhang W, Chen B, Cao Y (2013) Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer’s disease. Eur Neurol 70(3–4):233–241. https://doi.org/10.1159/000351247

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting bax conformational change. Oncogene 20(53):7779–7786. https://doi.org/10.1038/sj.onc.1204984

    Article  CAS  PubMed  Google Scholar 

  40. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79(4):173–189. https://doi.org/10.1016/j.pneurobio.2006.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Balaraman Y, Limaye AR, Levey AI, Srinivasan S (2006) Glycogen synthase kinase 3β and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63(11):1226–1235. https://doi.org/10.1007/s00018-005-5597-y

    Article  CAS  PubMed  Google Scholar 

  42. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53(5):703–717. https://doi.org/10.1016/j.neuron.2007.01.029

    Article  CAS  PubMed  Google Scholar 

  43. van der Kooij MA, Groenendaal F, Kavelaars A, Heijnen CJ, van Bel F (2008) Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev 59(1):22–33. https://doi.org/10.1016/j.brainresrev.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  44. Ding J, Wang J, Li QY, Yu JZ, Ma CG, Wang X, Lu CZ, Xiao BG (2017) Neuroprotection and CD131/GDNF/AKT pathway of carbamylated erythropoietin in hypoxic neurons. Mol Neurobiol 54(7):5051–5060. https://doi.org/10.1007/s12035-016-0022-0

    Article  CAS  PubMed  Google Scholar 

  45. Jia Y, Mo SJ, Feng QQ, Zhan ML, OuYang LS, Chen JC, Ma YX, Wu JJ, Lei WL (2014) EPO-dependent activation of PI3K/Akt/FoxO3a signalling mediates neuroprotection in in vitro and in vivo models of Parkinson’s disease. J Mol Neurosci 53(1):117–124. https://doi.org/10.1007/s12031-013-0208-0

    Article  CAS  PubMed  Google Scholar 

  46. Watson K, Fan GH (2005) Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1–42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol 67(3):757–765. https://doi.org/10.1124/mol.104.004812

    Article  CAS  PubMed  Google Scholar 

  47. Townsend M, Mehta T, Selkoe DJ (2007) Soluble Aβ inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282(46):33305–33312. https://doi.org/10.1074/jbc.M610390200

    Article  CAS  PubMed  Google Scholar 

  48. Moosavi M, Khales GY, Abbasi L, Zarifkar A, Rastegar K (2012) Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation. Neuropharmacology 62(5–6):2018–2023. https://doi.org/10.1016/j.neuropharm.2011.12.031

    Article  CAS  PubMed  Google Scholar 

  49. Medina MG, Ledesma MD, Dominguez JE, Medina M, Zafra D, Alameda F, Dotti CG, Navarro P (2005) Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J 24(9):1706–1716. https://doi.org/10.1038/sj.emboj.7600650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghasemi R, Zarifkar A, Rastegar K, maghsoudi N, Moosavi M (2014) Insulin protects against Aβ-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology 85:113–120. https://doi.org/10.1016/j.neuropharm.2014.01.036

    Article  CAS  PubMed  Google Scholar 

  51. Ghasemi R, Zarifkar A, Rastegar K, Maghsoudi N, Moosavi M (2014) Repeated intra-hippocampal injection of beta-amyloid 25–35 induces a reproducible impairment of learning and memory: considering caspase-3 and MAPKs activity. Eur J Pharmacol 726:33–40. https://doi.org/10.1016/j.ejphar.2013.11.034

    Article  CAS  PubMed  Google Scholar 

  52. Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275(16):12200–12206

    Article  CAS  Google Scholar 

  53. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185

    Article  CAS  Google Scholar 

  54. Subramaniam S, Unsicker K (2010) ERK and cell death: ERK1/2 in neuronal death. FEBS J 277(1):22–29. https://doi.org/10.1111/j.1742-4658.2009.07367.x

    Article  CAS  PubMed  Google Scholar 

  55. Li R, Zhang LM, Sun WB (2017) Erythropoietin rescues primary rat cortical neurons from pyroptosis and apoptosis via Erk1/2-Nrf2/Bach1 signal pathway. Brain Res Bull 130:236–244

    Article  CAS  Google Scholar 

  56. Zou YR, Zhang J, Wang J, Peng L, Li GS, Wang L (2016) Erythropoietin receptor activation protects the kidney from ischemia/reperfusion-induced apoptosis by activating ERK/p53 signal pathway. Transpl Proc 48(1):217–221. https://doi.org/10.1016/j.transproceed.2016.01.009

    Article  CAS  Google Scholar 

  57. Sinha D, Bannergee S, Schwartz JH, Lieberthal W, Levine JS (2004) Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis. J Biol Chem 279(12):10962–10972. https://doi.org/10.1074/jbc.M312048200

    Article  CAS  PubMed  Google Scholar 

  58. Chen J, Yang Z, Zhang X (2015) Carbamylated erythropoietin: a prospective drug candidate for neuroprotection. Biochem Insights 8(Suppl 1):25–29. https://doi.org/10.4137/bci.s30753

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This article is a part of the thesis written by Mrs "Etrat Hooshmandi" in School of Medicine (Registration No: 558) and supported by a Grant (No. 22534) from Deputy of research and technology and Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rasoul Ghasemi or Nader Maghsoudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests related to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 3706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooshmandi, E., Moosavi, M., Katinger, H. et al. CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: considering Akt/GSK-3β and ERK signaling pathways. Mol Biol Rep 47, 2097–2108 (2020). https://doi.org/10.1007/s11033-020-05309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05309-6

Keywords

Navigation