Skip to main content

Advertisement

Log in

The effects of transplanted mesenchymal stem cells treated with 17-b estradiol on experimental autoimmune encephalomyelitis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study was conducted aimed at exploring the modulatory effects of 17-b estradiol (17-bED) on mesenchymal stem cells (MSCs) in the EAE (experimental autoimmune encephalomyelitis) animal model of multiple sclerosis (MS). Following the isolation of bone marrow-derived MSCs from the bilateral femurs and tibias of the male Wistar rats, the cells were harvested and cultured in the presence of 100 nM 17-bED for 24 h. EAE was induced in male Wistar rats (8–12 weeks old) using guinea pig spinal cord homogenate, in combination with the complete Freund’s adjuvant. The MSC therapy was triggered when all of the animals obtained a disability score. The symptoms were monitored on a daily basis throughout the study until the rats were euthanized. The mRNA expression of cytokines, including IL-17, IFN-γ, TNF-α, IL-10, IL-4, and TGF-β together with MMP8 and MMP9 as the family members of matrix metalloproteinases (MMPs) in the brain and spinal cord tissues were examined using real-time PCR. The levels of splenocytes-originated IL-10 and IFN-γ cytokines were also measured by ELISA. The MTT-based research findings showed that the infiltration of lymphocytes into the spleen decreased considerably. It was also observed that the mRNA expression of proinflammatory cytokines decreased significantly, while the mRNA levels of anti-inflammatory cytokines increased remarkably. It was also found that the mRNA levels of the examined matrix metalloproteinases (MMP8 and MMP9) were downregulated significantly. The findings of the present study indicated that the administration of 17-bED enhanced the efficacy of MSCs transplantation and modulated immune responses relatively in the EAE model, via the regulation of either pro- or anti-inflammatory cytokines and matrix metalloproteinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zorzon M, Zivadinov R, Nasuelli D, Dolfini P, Bosco A, Bratina A, Tommasi M, Locatelli L, Cazzato G (2003) Risk factors of multiple sclerosis: a case–control study. Neurol Sci 24(4):242–247

    CAS  PubMed  Google Scholar 

  2. Batoulis H, Addicks K, Kuerten S (2010) Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T H 1 paradigm. Ann Anat-Anat Anz 192(4):179–193

    CAS  Google Scholar 

  3. Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585(23):3715–3723

    CAS  PubMed  Google Scholar 

  4. O’Garra A, Steinman L, Gijbels K (1997) CD4+ T-cell subsets in autoimmunity. Curr Opin Immunol 9(6):872–883

    PubMed  Google Scholar 

  5. Alexander J, Harris M, Wells S, Mills G, Chalamidas K, Ganta V, McGee J, Jennings M, Gonzalez-Toledo E, Minagar A (2010) Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-β1b. Mult Scler J 16(7):801–809

    CAS  Google Scholar 

  6. Leppert D, Ford J, Stabler G, Grygar C, Lienert C, Huber S, Miller KM, Hauser SL, Kappos L (1998) Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain: J Neurol 121(12):2327–2334

    Google Scholar 

  7. Gold R, Lühder F (2008) Interleukin-17—extended features of a key player in multiple sclerosis. Am J Pathol 172(1):8–10

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mirshafiey A, Mohsenzadegan M (2009) TGF-β as a promising option in the treatment of multiple sclerosis. Neuropharmacology 56(6–7):929–936

    CAS  PubMed  Google Scholar 

  9. Carrieri P, Provitera V, Perrella M, Tartaglia G, Busto A, Perrella O (1997) Possible role of transforming growth factor-β in relapsing-remitting multiple sclerosis. Neurol Res 19(6):599–600

    CAS  PubMed  Google Scholar 

  10. Lin RF, Lin T-s, Tilton R, Cross A (1993) Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study. J Exp Med 178(2):643–648

    CAS  PubMed  Google Scholar 

  11. Okuda Y, Nakatsuji Y, Fujimura H, Esumi H, Ogura T, Yanagihara T, Sakoda S (1995) Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J Neuroimmunol 62(1):103–112

    CAS  PubMed  Google Scholar 

  12. Asadi F, Mirzaei MR, Abtahi Froushani SM (2018) Comparison of the effects of 17β-estradiol treated and untreated mesenchymal stem cells on ameliorating animal model of multiple sclerosis. Iran J Basic Med Sci 21(9):936–942

    PubMed  PubMed Central  Google Scholar 

  13. Barnard AL, Chidgey AP, Bernard CC, Boyd RL (2009) Androgen depletion increases the efficacy of bone marrow transplantation in ameliorating experimental autoimmune encephalomyelitis. Blood 113(1):204–213

    CAS  PubMed  Google Scholar 

  14. Burt RK, Burns WH, Miller SD (1997) Bone marrow transplantation for multiple sclerosis: returning to Pandora’s box. Immunol Today 18(12):559–561

    CAS  PubMed  Google Scholar 

  15. Buzzard KA, Broadley SA, Butzkueven H (2012) What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis? Int J Mol Sci 13(10):12665–12709

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Soldan SS, Retuerto AIA, Sicotte NL, Voskuhl RR (2003) Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol 171(11):6267–6274

    CAS  PubMed  Google Scholar 

  17. Wang Q, Yu J-h, Zhai H-h, Zhao Q-t, Chen J-w, Shu L, Li D-q, Liu D-y, Ding Y (2006) Temporal expression of estrogen receptor alpha in rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 347(1):117–123

    CAS  PubMed  Google Scholar 

  18. Masuda H, Kalka C, Takahashi T, Yoshida M, Wada M, Kobori M, Itoh R, Iwaguro H, Eguchi M, Iwami Y (2007) Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 101(6):598–606

    CAS  PubMed  Google Scholar 

  19. Haczynski J, Tarkowski R, Jarzabek K, Slomczynska M, Wolczynski S, Magoffin DA, Jakowicki JA, Jakimiuk AJ (2002) Human cultured skin fibroblasts express estrogen receptor α and β. Int J Mol Med 10(2):149–153

    CAS  PubMed  Google Scholar 

  20. Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D (2001) Estrogen modulates estrogen receptor α and β expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem 81(S36):144–155

    Google Scholar 

  21. Holzer G, Einhorn TA, Majeska RJ (2002) Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. J Orthop Res 20(2):281–288

    CAS  PubMed  Google Scholar 

  22. Hong L, Colpan A, Peptan IA, Daw J, George A, Evans CA (2007) 17-β estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng 13(6):1197–1203

    CAS  PubMed  Google Scholar 

  23. Sato R, Maesawa C, Fujisawa K, Wada K, Oikawa K, Takikawa Y, Suzuki K, Oikawa H, Ishikawa K, Masuda T (2004) Prevention of critical telomere shortening by oestradiol in human normal hepatic cultured cells and carbon tetrachloride induced rat liver fibrosis. Gut 53(7):1001–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liblau RS, Singer SM, McDevitt HO (1995) Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16(1):34–38

    CAS  PubMed  Google Scholar 

  25. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199

    CAS  PubMed  Google Scholar 

  26. Chen GQ, Chen YY, Wang XS, Wu SZ, Yang HM, Xu HQ, He JC, Wang XT, Chen JF, Zheng RY (2010) Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res 1309:116–125

    CAS  PubMed  Google Scholar 

  27. Abtahi Froushani SM, Delirezh N, Hobbenaghi R, Mosayebi G (2014) Synergistic effects of atorvastatin and all-trans retinoic acid in ameliorating animal model of multiple sclerosis. Immunol Invest 43(1):54–68

    CAS  PubMed  Google Scholar 

  28. Karimabad MN, Falahati-Pour SK, Hassanshahi G (2016) Significant role (s) of CXCL12 and the SDF-1 3′ a genetic variant in the pathogenesis of multiple sclerosis. NeuroImmunoModulation 23(4):197–208

    Google Scholar 

  29. Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, Shevach EM, Röcken M (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180(5):1961–1966

    CAS  PubMed  Google Scholar 

  30. Chen Y, Kuchroo VK, Inobe J-i, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265(5176):1237–1240

    CAS  PubMed  Google Scholar 

  31. Freedman MS, Bar-Or A, Atkins HL, Karussis D, Frassoni F, Lazarus H, Scolding N, Slavin S, Le Blanc K, Uccelli A (2010) The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult Scler J 16(4):503–510

    Google Scholar 

  32. Cha Y, Kwon SJ, Seol W, Park K-S (2008) Estrogen receptor-α mediates the effects of estradiol on telomerase activity in human mesenchymal stem cells. Mol Cells 26(5):454

    CAS  PubMed  Google Scholar 

  33. Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel D (2003) Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells (Dayton, Ohio) 21(4):389–404

    CAS  Google Scholar 

  34. Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9(1):72–84

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44(4):215–230

    CAS  PubMed  Google Scholar 

  36. Erwin GS, Crisostomo PR, Wang Y, Wang M, Markel TA, Guzman M, Sando IC, Sharma R, Meldrum DR (2009) Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. J Surg Res 152(2):319–324

    CAS  PubMed  Google Scholar 

  37. Abtahi Froushani SM, Afzale Ahangaran N (2018) The effect Mesenchymal stem cell treated with 17-β estradiol on the future of the innate immunity responses of rheumatoid arthritis induced with collagen in Wistar rats. Armaghane danesh 23(1):42–56

    Google Scholar 

  38. Filková M, Aradi B, Šenolt L, Ospelt C, Vettori S, Mann H, Filer A, Raza K, Buckley CD, Snow M (2014) Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis 73(10):1898–1904

    PubMed  Google Scholar 

  39. Rochefort GY, Delorme B, Lopez A, Hérault O, Bonnet P, Charbord P, Eder V, Domenech J (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells (Dayton, Ohio) 24(10):2202–2208

    CAS  Google Scholar 

  40. Kazi AA, Koos RD (2007) Estrogen-induced activation of hypoxia-inducible factor-1α, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway. Endocrinology 148(5):2363–2374

    CAS  PubMed  Google Scholar 

  41. Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, Sharifi AM (2015) Effect of 17beta-estradiol on mediators involved in mesenchymal stromal cell trafficking in cell therapy of diabetes. Cytotherapy 17(1):46–57. https://doi.org/10.1016/j.jcyt.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  42. Simpson E (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5):225–230

    CAS  PubMed  Google Scholar 

  43. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    PubMed  Google Scholar 

  44. Gordon D, Pavlovska G, Glover CP, Uney JB, Wraith D, Scolding NJ (2008) Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci Lett 448(1):71–73

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kemp K, Gordon D, Wraith D, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N (2011) Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 37(2):166–178

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Torkaman M, Ghollasi M, Mohammadnia-Afrouzi M, Salimi A, Amari A (2017) The effect of transplanted human Wharton’s jelly mesenchymal stem cells treated with IFN-γ on experimental autoimmune encephalomyelitis mice. Cell Immunol 311:1–12

    CAS  PubMed  Google Scholar 

  47. Yousefi F, Ebtekar M, Soleimani M, Soudi S, Hashemi SM (2013) Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 17(3):608–616

    CAS  PubMed  Google Scholar 

  48. Hong L, Zhang G, Sultana H, Yu Y, Wei Z (2010) The effects of 17-β estradiol on enhancing proliferation of human bone marrow mesenchymal stromal cells in vitro. Stem Cells Dev 20(5):925–931

    PubMed  PubMed Central  Google Scholar 

  49. Simpson E (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3):225–230

    CAS  PubMed  Google Scholar 

  50. Fan J-Z, Yang L, Meng G-L, Lin Y-s, Wei B-Y, Fan J, Hu H-M, Liu Y-W, Chen S, Zhang J-K (2014) Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway. Mol Cell Biochem 392(1–2):85–93

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen F-P, Hu C-H, Wang K-C (2012) Estrogen modulates osteogenic activity and estrogen receptor mRNA in mesenchymal stem cells of women. Climacteric 16(1):154–160

    CAS  PubMed  Google Scholar 

  52. Yun SP, Lee MY, Ryu JM, Song CH, Han HJ (2009) Role of HIF-1α and VEGF in human mesenchymal stem cell proliferation by 17β-estradiol: involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol-Cell Physiol 296(2):C317–C326

    CAS  PubMed  Google Scholar 

  53. Ayaloglu-Butun F, Terzioglu-Kara E, Tokcaer-Keskin Z, Akcali KC (2012) The effect of estrogen on bone marrow-derived rat mesenchymal stem cell maintenance: inhibiting apoptosis through the expression of Bcl-xL and Bcl-2. Stem Cell Rev Rep 8(2):393–401

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Rafsanjan University of Medical Sciences, Rafsanjan, Iran, for its great support of this study.

Funding

This study was supported by the RUMS by the Grant Number “1396.11.7-1535” and ethical code “IR.RUMS.REC.1396.165” from the Rafsanjan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mirzaei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari Barchi Nezhad, R., Asadi, F., Abtahi Froushani, S.M. et al. The effects of transplanted mesenchymal stem cells treated with 17-b estradiol on experimental autoimmune encephalomyelitis. Mol Biol Rep 46, 6135–6146 (2019). https://doi.org/10.1007/s11033-019-05048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05048-3

Keywords

Navigation