Skip to main content

Advertisement

Log in

Selection of suitable reference genes for qRT-PCR analysis of Begonia semperflorens under stress conditions

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Begonia semperflorens (B. semperflorens), belonging to the family Begoniaceae, has now been widely cultivated worldwide and is famous for its ornamental plants with colourful flowers and distinctive leaves. The selection of appropriate internal reference genes is very important to accurately determine target gene expression via quantitative real-time PCR. However, internal reference gene selection has never been conducted in B. semperflorens. In this study, seven candidate reference genes of B. semperflorens, including 18S ribosomal RNA (Bs18S), pentatricopeptide repeat-containing protein (BsPPR), actin-related protein 5 isoform X2 (BsACT), DNAJ homologue subfamily C member 17 (BsDNAJ), glyceraldehyde-3-phosphate dehydrogenase (BsGAPDH), NAD-dependent malic enzyme 59 kDa isoform, mitochondria (BsNAD-ME), and peptidyl-prolyl cis–trans isomerase CYP26-2, chloroplast (BsCYP), which were obtained from our previous studies, were selected. The stabilities of these genes under stress conditions were analysed using geNorm and NormFinder. Validation of target gene expressions, including phenylalanine ammonia-lyase (BsPAL) and respiratory burst oxidase homologue D (BsRBOHD) under biotic and abiotic conditions, phenylalanine ammonia-lyase (BsPAL), anthocyanidin synthase (BsANS), chalcone synthase (BsCHS), and flavanone-3-hydroxylase (BsF3H) under low temperature, using these seven internal reference genes for normalisation further confirmed the stabilities of the selected genes and indicated the need for reference gene selection for normalising gene expressions in B. semperflorens. Of the seven candidate reference genes, the combination of BsACT, BsDNAJ, and BsNAD-ME was the ideal reference gene set for normalising gene expression in samples under biotic conditions. BsCYP combined with BsACT or BsGAPDH was the best reference gene pair under abiotic conditions. BsACT and BsPPR could be combined to normalise gene expression under low temperature. Our results will benefit future studies on gene expression in plants of Begoniaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the conclusions are provided in the article.

References

  1. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram M, Linehan WM, Knezevic V, Emmert-Buck MR (2002) Post-analysis follow-up and validation of microarray experiments. Nat Genet 32:509–514

    Article  CAS  Google Scholar 

  2. Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161(4):1783–1794

    Article  CAS  Google Scholar 

  3. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  Google Scholar 

  4. Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454

    Article  CAS  Google Scholar 

  5. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39

    Article  CAS  Google Scholar 

  6. Maroufi A, Bockstaele EV, Loose MD (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15

    Article  Google Scholar 

  7. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17

    Article  CAS  Google Scholar 

  8. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345(2):646–651

    Article  CAS  Google Scholar 

  9. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Wuytswinke OV (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    Article  CAS  Google Scholar 

  10. Zhu XY, Li XP, Chen WX, Chen JY, Lu WJ, Chen L, Fu DW (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 7(8):e44405

    Article  CAS  Google Scholar 

  11. Anup PC, Melvin P, Kini KR (2017) Reference gene selection and validation for gene expression studies in downy mildew infected pearl millet by quantitative real-time PCR. Australas Plant Path 46(5):441–452

    Article  CAS  Google Scholar 

  12. He MJ, Cui SL, Yang XL, Mu GJ, Chen HY, Liu LF (2017) Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR. Electron J Biotechnol 28:76–86

    Article  CAS  Google Scholar 

  13. Wan HJ, Zhao ZG, Qian CT, Sui YH, Malik AA, Chen JF (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399(2):257–261

    Article  CAS  Google Scholar 

  14. Tang X, Zhang N, Si HJ, Calderón-Urrea A (2017) Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods 13:85

    Article  Google Scholar 

  15. Kou XY, Zhang L, Yang SZ, Li GH, Ye JL (2017) Selection and validation of reference genes for quantitative RT-PCR analysis in peach fruit under different experimental conditions. Sci Hortic Amsterdam 225:195–203

    Article  CAS  Google Scholar 

  16. Dong YP, Qu Y, Qi R, Bai X, Tian G, Wang Y, Wang JW, Zhang KM (2018) Transcriptome analysis of the biosynthesis of anthocyanins in Begonia semperflorens under low-temperature and high-light conditions. Forests 9(2):87

    Article  Google Scholar 

  17. Wang JW, Guo ML, Li YH, Wu RH, Zhang KM (2018) High-throughput transcriptome sequencing reveals the role of anthocyanin metabolism in Begonia semperflorens under high light stress. Photochem Photobiol 94(1):105–114

    Article  CAS  Google Scholar 

  18. Liao ZH, Chen M, Guo L, Gong YF, Tang F, Sun XF, Tang KX (2004) Rapid isolation of high-quality total RNA from Taxus and Ginkgo. Prep Biochem Biotechnol 34(3):209–214

    Article  CAS  Google Scholar 

  19. Schlotter YM, Veenhof EZ, Brinkhof B, Rutten VPMG, Spee B, Willemse T, Penning LC (2009) A GeNorm algorithm-based selection of reference genes for quantitative real-time PCR in skin biopsies of healthy dogs and dogs with atopic dermatitis. Vet Immunol Immunopathol 129(1–2):115–118

    Article  CAS  Google Scholar 

  20. Andersen CL, Jensen JL, Ørntof TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  Google Scholar 

  21. Yang ZM, Chen Y, Hu BY, Tan ZQ, Huang BR (2015) Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PLoS ONE 10(3):e0119569

    Article  Google Scholar 

  22. Li YM, Zhang KM, Jin HH, Zhu L, Li YH (2015) Isolation and expression analysis of four putative structural genes involved in anthocyanin biosynthesis in Begonia semperflorens. J Hortic Sci Biotechnol 90(4):444–450

    Article  CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  24. Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582

    Article  CAS  Google Scholar 

  26. Vanguilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626

    Article  CAS  Google Scholar 

  27. Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344(1):141–143

    Article  CAS  Google Scholar 

  28. Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    Article  Google Scholar 

  29. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  Google Scholar 

  30. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227(6):1343–1349

    Article  CAS  Google Scholar 

  31. Zhang YX, Han XJ, Chen SS, Zheng L, He XL, Liu MY, Qiao GR, Wang Y, Zhuo RY (2017) Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses. Sci Rep UK 7:40290

    Article  CAS  Google Scholar 

  32. Løvdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387(2):238–242

    Article  Google Scholar 

  33. Cheng T, Zhu FL, Sheng JJ, Zhao LL, Zhou FS, Hu ZL, Diao Y, Jin SR (2019) Selection of suitable reference genes for quantitive real-time PCR normalization in Miscanthus lutarioriparia. Mol Biol Rep. https://doi.org/10.1007/s11033-019-04910-8

    Article  PubMed  Google Scholar 

  34. Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Ha CV, Nishiyama R, Guttikonda SK, Quach TN, Gutierrez-Gonzalez JJ, Tran LSP, Nguyen HT (2012) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS ONE 7(9):e46487

    Article  CAS  Google Scholar 

  35. De Ketelaere A, Goossens K, Peelman L, Burvenich C (2006) Technical note: validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes. J Dairy Sci 89:4066–4069

    Article  Google Scholar 

  36. Qian J, Gao YN, Wáng Y, Wu YY, Wang Y, Zhao YC, Chen HY, Bao DP, Xu JY, Bian XH (2018) Selection and evaluation of appropriate reference genes for RT-qPCR normalization of Volvariella volvacea gene expression under different conditions. Biomed Res Int 2018:6125706

    PubMed  PubMed Central  Google Scholar 

  37. Sinha P, Saxena RK, Singh VK, Krishnamurthy L, Varshney RK (2015) Selection and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under heat and salt stress conditions. Front Plant Sci 6:1071

    PubMed  PubMed Central  Google Scholar 

  38. Galli V, Borowski JM, Perin EC, Messias RDS, Labonde J, Pereira IDS, Silva SDDA, Rombaldi CV (2015) Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene 554(2):205–214

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Henan Province (Grant No. 182300410091) and the Key Scientific Research Project of High Education in Henan Province (Grant No. 18B220004).

Author information

Authors and Affiliations

Authors

Contributions

KMZ planned the research. YQ and GT performed the experiments. YW, RQ, XB, and YHL analysed and discussed the data. YML and KMZ wrote the article.

Corresponding author

Correspondence to Kaiming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they all contribute significantly to the work and have no conflicts of interest. The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Additionally, neither the manuscript nor any part of its content has been published or submitted for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qu, Y., Wang, Y. et al. Selection of suitable reference genes for qRT-PCR analysis of Begonia semperflorens under stress conditions. Mol Biol Rep 46, 6027–6037 (2019). https://doi.org/10.1007/s11033-019-05038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05038-5

Keywords

Navigation