Skip to main content
Log in

Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dinoflagellate algae are microeukaryotes that have distinct genomes and gene regulation systems, making them an interesting model for studying protist evolution and genomics. In the present study, we discovered a novel manganese superoxide dismutase (PmMnSOD) gene from the marine dinoflagellate Prorocentrum minimum, examined its molecular characteristics, and evaluated its transcriptional responses to the oxidative stress-inducing contaminants, CuSO4 and NaOCl. Its cDNA was 1238 bp and contained a dinoflagellate spliced leader sequence, a 906 bp open reading frame (301 amino acids), and a poly (A) tail. The gene was coded on the nuclear genome with one 174 bp intron; signal peptide analysis showed that it might be localized to the mitochondria. Real-time PCR analysis revealed an increase in gene expression of MnSOD and SOD activity when P. minimum cells were separately exposed to CuSO4 and NaOCl. In addition, both contaminants considerably decreased chlorophyll autofluorescence, and increased intracellular reactive oxygen species. These results suggest that dinoflagellate MnSOD may be involved in protecting cells against oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from GenBank database, and their accession numbers are provided in Supplementary Table 2. (Color figure online)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

adapted from Sheshadri and Kumar (2016). CAT catalase, GPx glutathione peroxidase, GST glutathione S-transferase, GSSG glutathione disulphide

Similar content being viewed by others

References

  1. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91(10):1523–1534. https://doi.org/10.3732/ajb.91.10.1523

    Article  CAS  PubMed  Google Scholar 

  2. Taylor FJR, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17(2):407–418. https://doi.org/10.1007/s10531-007-9258-3

    Article  Google Scholar 

  3. Lin S, Zhang H, Zhuang Y, Tran B, Gill J (2010) Spliced leader–based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proc Natl Acad Sci USA 107(46):20033–20038. https://doi.org/10.1073/pnas.1007246107

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brunelle SA, Van Dolah FM (2011) Post-transcriptional regulation of s-phase genes in the dinoflagellate, Karenia brevis. J Eukaryot Microbiol 58:373–382. https://doi.org/10.1111/j.1550-7408.2011.00560.x

    Article  CAS  PubMed  Google Scholar 

  5. Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162(6):551–569. https://doi.org/10.1016/j.resmic.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  6. Shoguchi E et al (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23(15):1399–1408. https://doi.org/10.1016/j.cub.2013.05.062

    Article  CAS  PubMed  Google Scholar 

  7. Ponmani P, Guo R, Ki J-S (2016) Analysis of the genomic DNA of the harmful dinoflagellate Prorocentrum minimum: a brief survey focused on the non-coding RNA gene sequences. J Appl Phycol 28(1):335–344. https://doi.org/10.1007/s10811-015-0570-0

    Article  CAS  Google Scholar 

  8. Ebenezer V, Lim WA, Ki J-S (2014) Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J Appl Phycol 26:2357–2365. https://doi.org/10.1007/s10811-014-0267-9

    Article  CAS  Google Scholar 

  9. Ebenezer V, Suh Y-S, Ki J-S (2015) Effects of biocide chlorine on biochemical responses of the dinoflagellate Prorocentrum minimum. Water Environ Res 87:1949–1954. https://doi.org/10.2175/106143015X14362865226635

    Article  CAS  PubMed  Google Scholar 

  10. Guo R, Ki J-S (2012) Differential transcription of heat shock protein 90 (HSP90) in the dinoflagellate Prorocentrum minimum by copper and endocrine-disrupting chemicals. Ecotoxicology 21(2):1448–1457. https://doi.org/10.1007/s10646-012-0898-z

    Article  CAS  PubMed  Google Scholar 

  11. Guo R, Ebenezer V, Ki J-S (2014) PmMGST3, a novel microsomal glutathione S-transferase gene in the dinoflagellate Prorocentrum minimum, is a potential biomarker of oxidative stress. Gene 546(2):378–385. https://doi.org/10.1016/j.gene.2014.05.046

    Article  CAS  PubMed  Google Scholar 

  12. Guo R, Youn SH, Ki J-S (2015) Heat shock protein 70 and 90 genes in the harmful dinoflagellate Cochlodinium polykrikoides: genomic structures and transcriptional responses to environmental stresses. Int J Genomics 2015:484626. https://doi.org/10.1155/2015/484626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo R, Ki J-S (2013) Characterization of a novel catalase–peroxidase (KatG) gene from the dinoflagellate Prorocentrum minimum. J Phycol 49(5):1011–1016. https://doi.org/10.1111/jpy.12094

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Duan XG, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161(3):1517–1528. https://doi.org/10.1104/pp.112.212803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Djinovic Carugo K (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101(23):8569–8574. https://doi.org/10.1073/pnas.0308514101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dufernez F, Derelle E, Noël C, Sanciu G, Mantini C, Dive D, Soyer-Gobillard MO, Capron M, Pierce RJ, Wintjens R, Guillebault D, Viscogliosi E (2008) Molecular characterization of iron-containing superoxide dismutases in the heterotrophic dinoflagellate Crypthecodinium cohnii. Protist 159(2):223–238. https://doi.org/10.1016/j.protis.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  17. Kim HJ, Kato N, Kim S, Triplett B (2008) Cu/Zn superoxide dismutases in developing cotton fibers: evidence for an extracellular form. Planta 228(2):281–292. https://doi.org/10.1007/s00425-008-0734-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, Coombes JS (2012) Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 501:89–103. https://doi.org/10.1016/j.gene.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  19. Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St Clair D (1822) Batinic-Haberle I (2012) Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta 5:794–814. https://doi.org/10.1016/j.bbadis.2011.12.002

    Article  CAS  Google Scholar 

  20. Zhang S, Li XR, Xu H, Cao Y, Ma SH, Cao Y, Qiao D (2014) Molecular cloning and functional characterization of MnSOD from Dunaliella salina. J Basic Microbiol 54(5):438–447. https://doi.org/10.1002/jobm.201200483

    Article  CAS  PubMed  Google Scholar 

  21. Zelko IN, Manriani YJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349. https://doi.org/10.1016/S0891-5849(02)00905-X

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Sommerfeld M, Hu Q (2011) Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J Appl Phycol 23(6):995–1003. https://doi.org/10.1007/s10811-010-9631-6

    Article  CAS  Google Scholar 

  23. Que Y, Liu J, Xu L, Guo J, Chen R (2012) Molecular cloning and expression analysis of an Mn superoxide dismutase gene in sugarcane. Afr J Biotechnol 11:552–560

    CAS  Google Scholar 

  24. Okamoto OK, Robertson DL, Fagan TF, Hastings JW, Colepicolo P (2001) Different regulatory mechanisms modulate the expression of a dinoflagellate iron superoxide dismutase. J Biol Chem 276(23):19989–19993. https://doi.org/10.1074/jbc.M101169200

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Abassi S, Ki J-S (2019) Origin and roles of a novel copper-zinc superoxide dismutase gene from the harmful dinoflagellate Prorocentrum minimum. Gene 683:113–122. https://doi.org/10.1016/j.gene.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  26. Miller-Morey JS, Van Dolah FM (2004) Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp Biochem Physiol C 138(4):493–505. https://doi.org/10.1016/j.cca.2004.08.009

    Article  CAS  Google Scholar 

  27. Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK (2015) Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 15:48. https://doi.org/10.1186/s12862-015-0326-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo R, Wang H, Suh YS, Ki J-S (2016) Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate. BMC Genomics 17:29. https://doi.org/10.1186/s12864-015-2341-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang H, Campbell DA, Sturm NR, Lin S (2009) Dinoflagellate spliced leader RNA genes display a variety of sequences and genomic arrangements. Mol Biol Evol 26:1757–1771. https://doi.org/10.1093/molbev/msp083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Guo R, Ki J-S (2018) 6.0 K microarray reveals differential transcriptomic responses in the dinoflagellate Prorocentrum minimum exposed to polychlorinated biphenyl (PCB). Chemosphere 195:398–409. https://doi.org/10.1016/j.chemosphere.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  31. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qin Y, Lu M, Gong X (2008) Dihydrorhodamine 123 is superior to 2,7-dichlorodihydrofluorescein diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide in tumor cells. Cell Biol Int 32(2):224–228. https://doi.org/10.1016/j.cellbi.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  37. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  38. Kanematsu S, Okayasu M, Kurogi D (2012) Occurrence of two types of Mn-superoxide dismutase in the green alga Spirogyra: cDNA cloning and characterization of genomic genes and recombinant proteins. Bull Minamikyushu Univ 42A:1–13

    Google Scholar 

  39. Hansen KG, Herrmann JM (2019) Transport of proteins into mitochondria. Protein J 143:81–136

    Google Scholar 

  40. Gao XL, Li JM, Xu HX, Yan GH, Jiu M, Liu SS, Wang XW (2015) Cloning of a putative extracellular Cu/Zn superoxide dismutase and functional differences of superoxide dismutases in invasive and indigenous whiteflies. Insect Sci 22(1):52–64. https://doi.org/10.1111/1744-7917.12100

    Article  CAS  PubMed  Google Scholar 

  41. Okamoto OK, Liu L, Robertsonn DL, Hastings JW (2001) Members of the dinoflagellate luciferase gene family differ in synonymous substitution rates. Biochemistry 40(51):15862–15868. https://doi.org/10.1021/bi011651q

    Article  CAS  PubMed  Google Scholar 

  42. Bachvaroff TR, Place AR (2008) From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS ONE 3:e2929. https://doi.org/10.1371/journal.pone.0002929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wan XS, Devalaraja MN, St Clair DK (1994) Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol 13(11):1127–1136. https://doi.org/10.1089/dna.1994.13.1127

    Article  CAS  PubMed  Google Scholar 

  44. Beauchemin M, Roy S, Daoust P, Dagenais-Bellefeuille S, Bertomeu T, Letourneau L, Lang BF, Morse D (2012) Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. Proc Natl Acad Sci USA 109:15793–15798. https://doi.org/10.1073/pnas.1206683109

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mendez GS, Delwiche CF, Apt KE, Lippmeier JC (2015) Dinoflagellate gene structure and intron splice sites in a genomic tandem array. J Eukaryot Microbiol 62(5):679–687. https://doi.org/10.1111/jeu.12230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734. https://doi.org/10.1038/srep39734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luis P, Behnke K, Toepel J, Wilhelm C (2006) Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant, Cell Environ 29(11):2043–2054. https://doi.org/10.1111/j.1365-3040.2006.01579.x

    Article  CAS  Google Scholar 

  48. Qian H, Yu S, Sun Z, Xie X, Liu W, Fu Z (2010) Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat Toxicol 99(3):405–412. https://doi.org/10.1016/j.aquatox.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  49. Buapet P, Mohammadi NS, Pernice M, Kumar M, Kuzhiumparambil U, Ralph PJ (2019) Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri. Aquat Toxicol 207:91–100. https://doi.org/10.1016/j.aquatox.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  50. Vitro R, Mañas P, Alvarez I, Condon S, Raso J (2005) Membrane damage and microbial inactivation by chlorine in the absence and presence of chlorine-demanding substrate. Appl Environ Microbiol 71(9):5022–5028. https://doi.org/10.1128/AEM.71.9.5022-5028.2005

    Article  CAS  Google Scholar 

  51. Stanley NR, Pattison DI, Hawkins CL (2010) Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents. Chem Res Toxicol 23:1293–1302. https://doi.org/10.1021/tx100188b

    Article  CAS  PubMed  Google Scholar 

  52. Guo R, Ebenezer V, Wang H, Ki J-S (2017) Chlorine affects photosystem II and modulates the transcriptional levels of photosynthesis-related genes in the dinoflagellate Prorocentrum minimum. J Appl Phycol 29(1):153–163. https://doi.org/10.1007/s10811-016-0955-8

    Article  CAS  Google Scholar 

  53. Abassi S, Wang H, Park BS, Park JW, Ki J-S (2017) A novel cyclophilin B gene in the red tide dinoflagellate Cochlodinium polykrikoides: molecular characterizations and transcriptional responses to environmental stresses. Biomed Res Int 2017:4101580. https://doi.org/10.1155/2017/4101580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang H, Park BS, Lim WA, Ki J-S (2018) CpMCA, a novel metacaspase gene from the harmful dinoflagellate Cochlodinium polykrikoides and its expression during cell death. Gene 651:70–78. https://doi.org/10.1016/j.gene.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  55. Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. J Plant Physiol 22:209–220. https://doi.org/10.1071/PP9950209

    Article  CAS  Google Scholar 

  56. Wang H, Ebenezer V, Ki J-S (2018) Photosynthetic and biochemical responses of the freshwater green algae Closterium ehrenbergii Meneghini (Conjugatophyceae) exposed to the metal coppers and its implication for toxicity testing. J Microbiol 56(6):426–434. https://doi.org/10.1007/s12275-018-8081-8

    Article  CAS  PubMed  Google Scholar 

  57. Sathasivam R, Ebenezer V, Guo R, Ki J-S (2016) Physiological and biochemical responses of the freshwater green algae Closterium ehrenbergii to the common disinfectant chlorine. Ecotoxicol Environ Saf 133:501–508. https://doi.org/10.1016/j.ecoenv.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  58. Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62(4):565–572. https://doi.org/10.1016/j.chemosphere.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  59. Kebeish R, El-Ayouty Y, Husain A (2014) Effect of copper on growth, bioactive metabolites, antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. World J Biol Biol Sci 2(2):34–43

    Google Scholar 

  60. Ebenezer V, Ki J-S (2014) Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides. Algae 29(4):311–319. https://doi.org/10.4490/algae.2014.29.4.311

    Article  CAS  Google Scholar 

  61. Sheshadri P, Kumar A (2016) Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic Res 50(5):570–584. https://doi.org/10.3109/10715762.2016.1155708

    Article  CAS  PubMed  Google Scholar 

  62. White JA, Todd J, Newman T, Focks N, Girke T, de Ilárduya OM, Jaworski JG, Ohlrogge JB, Benning C (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 4:1582–1594. https://doi.org/10.1104/pp.124.4.1582

    Article  Google Scholar 

  63. Morey JS, Monroe EA, Kinney AL, Beal M, Johnson JG, Hitchcock GL, Van Dolah FM (2011) Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12:346. https://doi.org/10.1186/1471-2164-12-346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. S. Abbasi for critical comments on the early version of manuscript. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2016R1D1A1A09920198), and by a grant from the National Institute of Fisheries Science (R2019037) funded to J.-S. Ki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Seu Ki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies conducted on human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Kim, H., Lim, WA. et al. Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep 46, 5955–5966 (2019). https://doi.org/10.1007/s11033-019-05029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05029-6

Keywords

Navigation