Skip to main content

Advertisement

Log in

Identification and characterization of protein phosphorylation in the soluble protein fraction of scallop (Chlamys farreri) byssus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Protein phosphorylation is a widespread modification that and plays a significant role in marine bioadhesion. The phosphorylated proteins of the barnacle Amphibalanus amphitrite can form strong ionic bonds with mineral surfaces to adapt to marine environments. The adhesion protein PC-3 in the sandcastle worm Phragmatopoma californica contains multipleserine phosphorylations. Interactions between these phosphate groups and the Mg/Ca2+ ions are less soluble at seawater pH, making the cement less fluid and more gel-like. The scallop byssus is characterized by strong wet adhesion performance and substantial byssus secretions. Thus, the excellent underwater adhesion properties of the byssus make it an ideal candidate for studies related to the development of new and versatile composite materials. However, phosphoproteins have not been identified or studied in the scallop Chlamys farreri. Phosphorylated proteins in the C. farreri byssus protein were identified by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and further confirmed by phosphorylation staining and in-gel digestion coupled with mass spectrometric analysis (GeLC-MS/MS). Finally, sequence analyses and potential functional analyses were performed for these newly identified proteins. We have identified previously unreported phosphorylation sites within the C. farreri byssus protein. The results show phosphorylation modifications in all parts of the byssus structure and four foot-specific phosphorylated proteins were verified by two types of mass spectrometry and staining. The annotation of biological functions, based on sequence alignments shows that the protein 40,215.25 is homologous with TIMP-2. Similar to the previously identified TIMP-2-like protein Sbp8-1 in the scallop byssus, it contains an abundance of phosphorylated Cys, which may promote protein polymerization. We speculate that protein 40,215.25 may play an important role in cross-linking and adhesion of the scallop byssus. The phosphorylated protein we have identified in the C. farreri byssus may be related to the formation of protein cross-linkings and adhesion of the scallop foot. Our study lays the groundwork for a better understanding of the adhesion mechanism of the scallop byssus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PTMP1:

Proximal thread matrix protein1

mefp-5:

Mytilus edulis foot protein 5

TSP-1:

Thrombospondin-1

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

GeLC-MS/MS:

In-gel digestion coupled with mass spectrometric analysis

CaM:

Calmodulin

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Gorb SN (2008) Biological attachment devices: exploring nature’s diversity for biomimetics. Philos Trans Ser A Math Phys Eng Sci 366(1870):1557–1574. https://doi.org/10.1098/rsta.2007.2172

    Article  Google Scholar 

  2. Kamino K (2008) Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar Biotechnol 10(2):111–121. https://doi.org/10.1007/s10126-007-9076-3

    Article  CAS  PubMed  Google Scholar 

  3. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132. https://doi.org/10.1146/annurev-matsci-062910-100429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cha HJ, Hwang DS, Lim S (2008) Development of bioadhesives from marine mussels. Biotechnol J 3(5):631–638. https://doi.org/10.1002/biot.200700258

    Article  CAS  PubMed  Google Scholar 

  5. Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol 9(6):661–681. https://doi.org/10.1007/s10126-007-9053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li S, Xia Z, Chen Y, Gao Y, Zhan A (2018) Byssus structure and protein composition in the highly invasive fouling mussel Limnoperna fortunei. Front Physiol 9:418. https://doi.org/10.3389/fphys.2018.00418

    Article  PubMed  PubMed Central  Google Scholar 

  7. Waite JH, Andersen NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhes 81(3–4):297–317. https://doi.org/10.1080/00218460590944602

    Article  CAS  Google Scholar 

  8. Suhre MH, Gertz M, Steegborn C, Scheibel T (2014) Structural and functional features of a collagen-binding matrix protein from the mussel byssus. Nat Commun 5:3392. https://doi.org/10.1038/ncomms4392

    Article  CAS  PubMed  Google Scholar 

  9. Kamino K, Nakano M, Kanai S (2012) Significance of the conformation of building blocks in curing of barnacle underwater adhesive. FEBS J 279(10):1750–1760. https://doi.org/10.1111/j.1742-4658.2012.08552.x

    Article  CAS  PubMed  Google Scholar 

  10. George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 108(11):4670–4693. https://doi.org/10.1021/cr0782729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao H, Sun C, Stewart RJ, Waite JH (2005) Cement proteins of the tube-building polychaete Phragmatopoma californica. J Biol Chem 280(52):42938–42944. https://doi.org/10.1074/jbc.M508457200

    Article  CAS  PubMed  Google Scholar 

  12. Stewart RJ, Weaver JC, Morse DE, Waite JH (2004) The tube cement of Phragmatopoma californica: a solid foam. J Exp Biol 207(Pt 26):4727–4734. https://doi.org/10.1242/jeb.01330

    Article  CAS  PubMed  Google Scholar 

  13. Dickinson GH, Yang X, Wu F, Orihuela B, Rittschof D, Beniash E (2016) Localization of phosphoproteins within the barnacle adhesive interface. Biol Bull 230(3):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Long JR, Dindot JL, Zebroski H, Kiihne S, Clark RH, Campbell AA, Stayton PS, Drobny GP (1998) A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface. Proc Natl Acad Sci USA 95(21):12083–12087

    Article  CAS  PubMed  Google Scholar 

  15. Meisela H, Olieman C (1998) Estimation of calcium-binding constants of casein phosphopeptides by capillary zone electrophoresis. Anal Chim Acta 372:291–297

    Article  Google Scholar 

  16. Waite JH, Qin X (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40(9):2887–2893

    Article  CAS  PubMed  Google Scholar 

  17. Liu C, Xie L, Zhang R (2016) Ca(2+) mediates the self-assembly of the foot proteins of Pinctada fucata from the nanoscale to the microscale. Biomacromol 17(10):3347–3355. https://doi.org/10.1021/acs.biomac.6b01125

    Article  CAS  Google Scholar 

  18. Stewart RJ, Wang CS (2010) Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines. Biomacromol 11(4):969–974. https://doi.org/10.1021/bm901426d

    Article  CAS  Google Scholar 

  19. Addison JB, Ashton NN, Weber WS, Stewart RJ, Holland GP, Yarger JL (2013) Beta-sheet nanocrystalline domains formed from phosphorylated serine-rich motifs in caddisfly larval silk: a solid state NMR and XRD study. Biomacromol 14(4):1140–1148. https://doi.org/10.1021/bm400019d

    Article  CAS  Google Scholar 

  20. Wang CS, Stewart RJ (2013) Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): catechol oxidase catalyzed curing through peptidyl-DOPA. Biomacromol 14(5):1607–1617. https://doi.org/10.1021/bm400251k

    Article  CAS  Google Scholar 

  21. Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975):216–220. https://doi.org/10.1126/science.1181044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miao Y, Zhang L, Sun Y, Jiao W, Li Y, Sun J, Wang Y, Wang S, Bao Z, Liu W (2015) Integration of transcriptomic and proteomic approaches provides a core set of genes for understanding of scallop attachment. Mar Biotechnol 17(5):523–532. https://doi.org/10.1007/s10126-015-9635-y

    Article  CAS  PubMed  Google Scholar 

  23. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  24. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteom MCP 4(7):873–886. https://doi.org/10.1074/mcp.T500007-MCP200

    Article  CAS  Google Scholar 

  25. Liang X, Fonnum G, Hajivandi M, Stene T, Kjus NH, Ragnhildstveit E, Amshey JW, Predki P, Pope RM (2007) Quantitative comparison of IMAC and TiO2 surfaces used in the study of regulated, dynamic protein phosphorylation. J Am Soc Mass Spectrom 18(11):1932–1944. https://doi.org/10.1016/j.jasms.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. https://doi.org/10.1038/nmeth.1322

    Article  CAS  Google Scholar 

  27. Ashton NN, Taggart DS, Stewart RJ (2012) Silk tape nanostructure and silk gland anatomy of trichoptera. Biopolymers 97(6):432–445. https://doi.org/10.1002/bip.21720

    Article  CAS  PubMed  Google Scholar 

  28. Case ST, Powers J, Hamilton R, Burton MJ (1994) Silk and silk proteins from two aquatic insects. In: ACS symposium series, pp 80–90

    Google Scholar 

  29. Song IT, Stewart RJ (2018) Complex coacervation of Mg(ii) phospho-polymethacrylate, a synthetic analog of sandcastle worm adhesive phosphoproteins. Soft Matter 14(3):379–386. https://doi.org/10.1039/c7sm01654a

    Article  CAS  PubMed  Google Scholar 

  30. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Dai X, Wang L, Miao Y, Xu P, Liang P, Dong B, Bao Z, Wang S, Lyu Q, Liu W (2018) Characterization of an atypical metalloproteinase inhibitors like protein (Sbp8-1) from scallop byssus. Front Physiol 9:597. https://doi.org/10.3389/fphys.2018.00597

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [Grant Number 81770900].

Author information

Authors and Affiliations

Authors

Contributions

LZ and XZ wrote the main manuscript text; YW prepared Figs. 1, 2 and Table 1; PX and ZD prepared Figs. 3, 4 and Tables 2, 3, 4; WX and WL reviewed and revised the manuscript; All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weizhi Liu or Wenhua Xu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, X., Wang, Y. et al. Identification and characterization of protein phosphorylation in the soluble protein fraction of scallop (Chlamys farreri) byssus. Mol Biol Rep 46, 4943–4951 (2019). https://doi.org/10.1007/s11033-019-04945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04945-x

Keywords

Navigation