Skip to main content
Log in

The influence of BoLA-DRB3 alleles on incidence of clinical mastitis, cystic ovary disease and milk traits in Holstein Friesian cattle

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The major histocompatibility complex in cattle (BoLA) is regulated by genes that are closely related to the development of the immunological response to pathogens. The most polymorphic BoLA-DRB3.2 locus was analysed in 209 black-and-white Holstein-Friesian cows in Poland in order to a better explanation of influence of MHC on immunity to diseases in dairy cattle. A total of 23 alleles were identified, among which the *24, *16 and *22 alleles were observed with the highest frequency. These alleles were analysed in terms of their association with the occurrence of mastitis, ovarian cysts, retained placenta and uterine abscesses as well as their contribution to production traits (milk yield, protein and fat percentage in milk). It was determined that the BoLA-DRB3.2 *22 and *16 alleles were associated with a lower risk of clinical mastitis; however, a statistical significance was observed only for the *22 allele. Clinical mastitis was observed at a frequency lower by 8% in cows with one copy of the *22 allele compared to cows with 0 copies of the allele. The presence of the *22 allele in the genotype was also associated with higher milk yield, although this association was not statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis SA, Holmes EC, Staines KA, Smith KB, Stear MJ, McKeever DJ, MacHugh ND, Morrison WI (1999) Variation in the number of expressed MHC genes in different cattle class I haplotypes. Immunogenetics 50:319–328. https://doi.org/10.1007/s002510050608

    Article  CAS  PubMed  Google Scholar 

  2. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39. https://doi.org/10.1038/364033a0

    Article  CAS  PubMed  Google Scholar 

  3. Baltian LR, Ripoli MV, Sanfilippo S, Takeshima SN, Aida Y, Giovambattista G (2012) Association between BoLA-DRB3 and somatic cell count in Holstein cattle from Argentina. Mol Biol Rep 39:7215–7220. https://doi.org/10.1007/s11033-012-1526-y

    Article  CAS  PubMed  Google Scholar 

  4. Dietz AB, Cohen ND, Timms L, Kehrli ME (1997) Bovine lymphocyte antigen class II alleles as risk factors for high somatic cell counts in milk of lactacting dairy cows. J Dairy Sci 80:406–412. https://doi.org/10.3168/jds.S0022-0302(97)75951-4

    Article  CAS  PubMed  Google Scholar 

  5. Maillard JC, Berthier D, Chantal I, Thevenon S, Sidibé I, Stachurski F, Belemsaga D, Razafindraïbé H, Elsen JM (2003) Selection assisted by a BoLA-DR/DQ haplotype against susceptibility to bovine dermatophilosis. Genet Sel Evol 35:193–200. https://doi.org/10.1051/gse:2003027

    Article  CAS  Google Scholar 

  6. Sharif S, Mallard BA, Wilkie BN, Sargeant JM, Scott HM, Dekkers JC, Leslie KE (1998) Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Anim Genet 29:185–193. https://doi.org/10.1046/j.1365-2052.1998.00318.x

    Article  CAS  PubMed  Google Scholar 

  7. Takeshima SN, Saitou N, Morita M, Inoko H, Aida Y (2003) The diversity of bovine MHC class II DRB3 genes in Japanese Black, Japanese Shorthorn, Jersey and Holstein cattle in Japan. Gene 316:111–118. https://doi.org/10.1016/S0378-1119(03)00744-3

    Article  CAS  PubMed  Google Scholar 

  8. Owen JB, Axford RFE, Bishop SC (2000) Mastitis in dairy cattle. In: Axford RFE, Bishop SC, Nicholas FW, Owen JB (eds) Breeding for disease resistance in farm animals. CAB International, Wallingord, pp 243–252

    Google Scholar 

  9. Malinowski E, Kłossowska A, Smulski S (2008) Changes in biologically active cow’s milk components caused by mastitis. Med Weter 64:14–19

    Google Scholar 

  10. Rupp R, Hernandez A, Mallard BA (2007) Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. J Dairy Sci 90:1029–1038. https://doi.org/10.3168/jds.S0022-0302(07)71589-8

    Article  CAS  PubMed  Google Scholar 

  11. Pashmi M, Qanbari S, Ghorashi SA, Sharifi AR, Simianer H (2009) Analysis of relationship between bovine lymphocyte antigen DRB3.2 alleles, somatic cell count and milk traits in Iranian Holstein population. J Anim Breed Genet 126:296–303. https://doi.org/10.1111/j.1439-0388.2008.00783.x

    Article  CAS  PubMed  Google Scholar 

  12. Wu XX, Yang ZP, Wang XL, Mao YJ, Li SC, Shi XK, Chen Y (2010) Restriction fragment length polymorphism in the exon 2 of the BoLA-DRB3 gene in Chinese Holstein of the south China. J Biomed Sci Eng 3:221–225. https://doi.org/10.4236/jbise.2010.32030

    Article  CAS  Google Scholar 

  13. Yoshida T, Furuta H, Kondo Y, Mukoyama H (2012) Association of BoLA-DRB3 alleles with mastitis resistance and susceptibility in Japanese Holstein cows. Anim Sci J 83:359–366. https://doi.org/10.1111/j.1740-0929.2011.00972.x

    Article  CAS  PubMed  Google Scholar 

  14. Pokorska J, Kułaj D, Dusza M, Żychlińska-Buczek J, Makulska J (2016) New rapid method of DNA isolation from milk somatic cells. Anim Biotechnol 27:113–117. https://doi.org/10.1080/10495398.2015.1116446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Eijk MJ, Stewart-Haynes JA, Lewin HA (1992) Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP. Anim Genet 23:483–496. https://doi.org/10.1111/j.1365-2052.1992.tb00168.x

    Article  PubMed  Google Scholar 

  16. Sun L, Song Y, Riaz H, Yang L (2013) Effect of BoLA-DRB3 exon2 polymorphisms on lameness of Chinese Holstein cows. Mol Biol Rep 40:1081–1086. https://doi.org/10.1007/s11033-012-2150-6

    Article  CAS  PubMed  Google Scholar 

  17. Davies CJ, Andersson L, Ellis SA, Hensen EJ, Lewin HA, Mikko S, Muggli-Cockett NE, van der Poel JJ, Russell GC (1997) Nomenclature for factors of the BoLA system, 1996: report of the ISAG BoLA Nomenclature Committee. Anim Genet 28:159–168. https://doi.org/10.1111/j.1365-2052.1997.00106.x

    Article  CAS  Google Scholar 

  18. Nagy S, Poczai P, Cernák I, Gorji AM, Hegedűs G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50:670–672. https://doi.org/10.1007/s10528-012-9509-1

    Article  CAS  PubMed  Google Scholar 

  19. Nassiry MR, Eftekhar Shahroodi F, Mosafer J, Mohammadi A, Manshad E, Ghazanfari S, Mohammad Abadi MR, Sulimova GE (2005) Analysis and frequency of bovine lymphocyte antigen (BoLA-DRB3) alleles in Iranian Holstein cattle. Genetika 41:664–668

    CAS  Google Scholar 

  20. Ramirez NF, Montoya A, Cerón-Muñoz MF, Villar D, Palacio LG (2014) Association of BoLA-DRB3 and TLR4 alleles with subclinical mastitis in cattle from Colombia. Rev Colomb Cienc Pecu 27:18–28

    Google Scholar 

  21. Oprządek J, Urtnowski P, Sender G, Pawlik A, Łukaszewicz M (2012) Frequency of BoLA-DRB3 alleles in Polish Holstein-Friesian cattle. Anim Sci Pap Rep 30:91–101

    Google Scholar 

  22. Schwab AE, Geary TG, Baillargeon P, Schwab AJ, Fecteau G (2009) Association of BoLA DRB3 and DQA1 alleles with susceptibly to Neospora caninum and reproductive outcome in Quebec Holstein cattle. Vet Parasitol 165:136–140. https://doi.org/10.1016/j.vetpar.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  23. Miyasaka T, Takeshima SN, Matsumoto Y, Kobayashi N, Matsuhashi T, Miyazaki Y, Tanabe Y, Ishibashi K, Sentsui H, Aida Y (2011) The diversity of bovine MHC class II DRB3 and DQA1 alleles in different herds of Japanese Black and Holstein cattle in Japan. Gene 472:42–49. https://doi.org/10.1016/j.gene.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  24. Lee BY, Hur TY, Jung JH, Kim H (2012) Identification of BoLA-DRB3.2 alleles in Korean native cattle (Hanwoo) and Holstein populations using a next generation sequencer. Anim Genet 43:438–441. https://doi.org/10.1111/j.1365-2052.2011.02264.x

    Article  CAS  PubMed  Google Scholar 

  25. Zanotti M, Strillacci MG, Taboni I, Samorè AB, Longeri M (2003) Histocompatibility genes and somatic cell count (SCC) in Italian Holstein Friesian. Ital J Anim Sci 2:sup1:85–87. https://doi.org/10.4081/ijas.2003.11675923

    Article  Google Scholar 

  26. Duangjinda M, Jindatajak Y, Tipvong W, Sriwarothai J, Pattarajinda V, Katawatin S, Boonkum W (2013) Association of BoLA-DRB3 alleles with tick-borne disease tolerance in dairy cattle in a tropical environment. Vet Parasitol 196:314–320. https://doi.org/10.1016/j.vetpar.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Sharma N, Singh NK, Bhadwal MS (2011) Relationship of somatic cell count and mastitis: an overview. Asian-Aust J Anim Sci 24:429–438

    Article  Google Scholar 

  28. Miller RH, Paape MJ (1985) Relationship between milk somatic cell count and milk yield. In: Proceedings of annual meeting national mastitis council. p. 60

  29. Harmon RJ (1994) Physiology of mastitis and factors affecting somatic cell counts. J Dairy Sci 77:2103–2112

    Article  CAS  Google Scholar 

  30. Wojdak-Maksymiec K, Kmiec M, Ziemak J (2006) Associations between bovine lactoferrin gene polymorphism and somatic cell count in milk. Vet Med 51:14–20

    Article  CAS  Google Scholar 

  31. Oprządek J, Sender G, Pawlik A, Łukaszewicz M (2015) Locus BoLA-DRB3 is just an ordinary site of the polygene when explaining genetic variance of somatic cell count and milk yield. J Dairy Res 82:449–452. https://doi.org/10.1017/S0022029915000527

    Article  CAS  PubMed  Google Scholar 

  32. Zambrano JA, Echeverri JZ, López-Herrera A (2014) Association of gene BoLA DRB3.2 with production traits in a dairy herd of Antioquia, Colombia. Rev MVZ Cordoba 19:4116–4129

    Article  CAS  Google Scholar 

  33. Sermyagin AA, Kovalyuk NV, Ermilov AN, Yanchukov IN, Satsuk VF, Dotsev AV, Deniskova TE, Brem G, Zinovieva NA (2016) Associations of BoLA-DRB3 genotypes with breeding values for milk production traits in Russian Dairy Cattle population. Agric Biol 51:775–781. https://doi.org/10.15389/agrobiology.2016.6.775eng

    Article  Google Scholar 

  34. Salehin M, Ghosh AK, Mallick PK, Bhattacharya TK (2009) Molecular characterization, polymorphism and association study of lysozyme gene with milk production and somatic cell trait in Bos indicus × Bos taurus cattle. Animal 3:623–631. https://doi.org/10.1017/S1751731109003620

    Article  CAS  PubMed  Google Scholar 

  35. Goertz I, Baes C, Weimann C, Reinsch N, Erhardt G (2009) Association between single nucleotide polymorphisms in the CXCR1 gene and somatic cell score in Holstein dairy cattle. J Dairy Sci 92:4018–4022. https://doi.org/10.3168/jds.2008-1536

    Article  CAS  PubMed  Google Scholar 

  36. Zhao ZL, Wang CF, Li QL, Ju ZH, Huang JM, Li JB, Zhong JF, Zhang JB (2012) Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins. Genet Mol Res 11:3744–3754. https://doi.org/10.4238/2012.October.15.6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from the Ministry of Science and Higher Education in Poland (DS 3259/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Pokorska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokorska, J., Kułaj, D., Dusza, M. et al. The influence of BoLA-DRB3 alleles on incidence of clinical mastitis, cystic ovary disease and milk traits in Holstein Friesian cattle. Mol Biol Rep 45, 917–923 (2018). https://doi.org/10.1007/s11033-018-4238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4238-0

Keywords

Navigation