Skip to main content
Log in

The association of AKNA gene polymorphisms with knee osteoarthritis suggests the relevance of this immune response regulator in the disease genetic susceptibility

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent studies have identified AKNA as a potential susceptibility gene for several inflammatory diseases. Here, we aimed to assess the potential association of AKNA polymorphisms with knee osteoarthritis (KOA) susceptibility in a Mexican population, following STREGA recommendations. From a DNA bank of 181 KOA patients and 140 healthy controls, two AKNA SNPs were genotyped using TaqMan probes. The association between KOA susceptibility and AKNA polymorphisms genotypes was evaluated by multivariated logistic regression analysis. Information regarding patients’ inflammatory biomarkers levels was obtained and their association with AKNA polymorphisms genotypes was assessed by lineal regression. We found a positive association with the recessive inheritance model of both AKNA polymorphisms (A/A genotype for both) and KOA susceptibility adjusting by age, body mass index (BMI), gender and place of birth (OR = 2.48, 95% CI 1.09–5.65 for rs10817595 polymorphism; and OR = 4.96; 95% CI 2.421–10.2 for rs3748176 polymorphism). Additionally these associations were also seen after stratifying patients by KOA severity and age. Furthermore the total leukocyte count was positively associated with rs10817595 AKNA polymorphism (β = 1.39; 95% CI 0.44–2.34) adjusting by age, BMI, gender, place of birth and disease severity. We suggest that regulatory and coding polymorphisms of the inflammatory modulator gene AKNA can influence the development of KOA. Further structural and functional studies might reveal the role of AKNA in OA and other rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Halaweish I, Alam HB (2015) Changing demographics of the American population. Surg Clin North Am 95:1–10. https://doi.org/10.1016/j.suc.2014.09.002

    Article  PubMed  Google Scholar 

  2. Cross M, Smith E, Hoy D et al (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73:1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763 doi

    Article  PubMed  Google Scholar 

  3. Hernández-Cáceres AE, Rodriguez-Amado J, Peláez-Ballestas I et al (2015) Factors associated with treatment of osteoarthritis: analysis of a COPCORD study in Nuevo León, México. Reumatol Clin 11:204–209. https://doi.org/10.1016/j.reuma.2014.08.001

    Article  PubMed  Google Scholar 

  4. Loyola-Sanchez A, Richardson J, Pelaez-Ballestas I et al (2014) Barriers to implementing the “2008 Mexican clinical practice guideline recommendations for the management of hip and knee osteoarthritis” in primary healthcare practice. Reum Clin 10:364–372. https://doi.org/10.1016/j.reumae.2014.01.013

    Article  Google Scholar 

  5. Haseeb A, Haqqi TM (2013) Immunopathogenesis of osteoarthritis. Clin Immunol 146:185–196. https://doi.org/10.1016/j.clim.2012.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valcamonica E, Chighizola CB, Comi D et al (2014) Levels of chemerin and interleukin 8 in the synovial fluid of patients with inflammatory arthritides and osteoarthritis. Clin Exp Rheumatol 32:243–250

    CAS  PubMed  Google Scholar 

  7. Siddiqa A, Sims-Mourtada JC, Guzman-Rojas L et al (2001) Regulation of CD40 and CD40 ligand by the AT-hook transcription factor AKNA. Nature 410:383–387

    Article  CAS  PubMed  Google Scholar 

  8. Ma W, Ortiz-Quintero B, Rangel R et al (2011) Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res 21:1564–1577. https://doi.org/10.1038/cr.2011.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perales G, Burguete-García AI, Dimas J et al (2010) A polymorphism in the AT-hook motif of the transcriptional regulator AKNA is a risk factor for cervical cancer. Biomarkers 15:470–474. https://doi.org/10.3109/1354750X.2010.485332

    Article  CAS  PubMed  Google Scholar 

  10. Martínez-Nava GA, Torres-Poveda K, Lagunas-Martínez A et al (2015) Cervical cancer-associated promoter polymorphism affects akna expression levels. Genes Immun 16:43–53. https://doi.org/10.1038/gene.2014.60

    Article  PubMed  Google Scholar 

  11. Mao L, Yang P, Hou S et al (2011) Label-free proteomics reveals decreased expression of CD18 and AKNA in Peripheral CD4 + T Cells from patients with Vogt-Koyanagi-Harada syndrome. PLoS ONE 6:e14616. https://doi.org/10.1371/journal.pone.0014616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen C, Bartenhagen C, Gombert M et al (2015) Next-generation-sequencing of recurrent childhood high hyperdiploid acute lymphoblastic leukemia reveals mutations typically associated with high risk patients. Leuk Res 39:990–1001. https://doi.org/10.1016/j.leukres.2015.06.005

    Article  PubMed  Google Scholar 

  13. Papic N, Maxwell CI, Delker DA et al (2012) RNA-sequencing analysis of 5′ capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses 4:581–612. https://doi.org/10.3390/v4040581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loughlin J (2015) Genetic contribution to osteoarthritis development: current state of evidence. Curr Opin Rheumatol 27:284–288. https://doi.org/10.1097/BOR.0000000000000171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Little J, Higgins JPT, Ioannidis JPA et al (2009) STrengthening the REporting of genetic association studies (STREGA): an extension of the STROBE statement. Genet Epidemiol 33:581–598. https://doi.org/10.1002/gepi.20410

    Article  PubMed  Google Scholar 

  17. Altman R, Asch E, Bloch D et al (1986) Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29:1039–1049

    Article  CAS  PubMed  Google Scholar 

  18. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lewontin RC (1964) The interaction of selection and linkage: I—general considerations; heterotic models. Genetics 49:49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kandahari AM, Yang X, Dighe AS et al (2015) Recognition of immune response for the early diagnosis and treatment of osteoarthritis. J Immunol Res 2015:192415. https://doi.org/10.1155/2015/192415

    Article  PubMed  PubMed Central  Google Scholar 

  21. Suram S, Silveira LJ, Mahaffey S et al (2013) Cytosolic phospholipase A(2)α and eicosanoids regulate expression of genes in macrophages involved in host defense and inflammation. PLoS ONE 8:e69002. https://doi.org/10.1371/journal.pone.0069002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mackey MF, Gunn JR, Maliszewsky C et al (1998) Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 161:2094–2098

    CAS  PubMed  Google Scholar 

  23. Peters AL, Stunz LL, Bishop GA (2009) CD40 and autoimmunity: the dark side of a great activator. Semin Immunol 21:293–300. https://doi.org/10.1016/j.smim.2009.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeggini E, Panoutsopoulou K, Southam L et al (2012) Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380:815–823. https://doi.org/10.1016/S0140-6736(12)60681-3

    Article  PubMed  Google Scholar 

  25. Hochberg MC, Yerges-Armstrong L, Yau M, Mitchell BD (2013) Genetic epidemiology of osteoarthritis: recent developments and future directions. Curr Opin Rheumatol 25:192–197. https://doi.org/10.1097/BOR.0b013e32835cfb8e

    Article  PubMed  PubMed Central  Google Scholar 

  26. Evangelou E, Kerkhof HJ, Styrkarsdottir U et al (2013) A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2012-203114

    Google Scholar 

  27. Moon S, Keam B, Hwang MY et al (2015) A genome-wide association study of copy-number variation identifies putative loci associated with osteoarthritis in Koreans. BMC Musculoskelet Disord 16:1–7. https://doi.org/10.1186/s12891-015-0531-4

    Article  CAS  Google Scholar 

  28. Lionel AC, Tammimies K, Vaags AK et al (2014) Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum Mol Genet 23:2752–2768. https://doi.org/10.1093/hmg/ddt669

    Article  CAS  PubMed  Google Scholar 

  29. Lee K-H, Ju U-I, Song J-Y, Chun Y-S (2014) The histone demethylase PHF2 promotes fat cell differentiation as an epigenetic activator of both C/EBPα and C/EBPδ. Mol Cells 37:734–741. https://doi.org/10.14348/molcells.2014.0180

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martínez-Nava GA, Torres-Poveda K, Lagunas-Martínez A et al (2015) Cervical cancer-associated promoter polymorphism affects akna expression levels. Genes Immun. https://doi.org/10.1038/gene.2014.60

    PubMed  Google Scholar 

  31. Harigai M, Hara M, Kawamoto M et al (2004) Amplification of the synovial inflammatory response through activation of mitogen-activated protein kinases and nuclear factor kappaB using ligation of CD40 on CD14 + synovial cells from patients with rheumatoid arthritis. Arthritis Rheum 50:2167–2177. https://doi.org/10.1002/art.20340

    Article  CAS  PubMed  Google Scholar 

  32. Gotoh H, Kawaguchi Y, Harigai M et al (2004) Increased CD40 expression on articular chondrocytes from patients with rheumatoid arthritis: contribution to production of cytokines and matrix metalloproteinases. J Rheumatol 31:1506–1512

    CAS  PubMed  Google Scholar 

  33. Kitagawa M, Mitsui H, Nakamura H et al (1999) Differential regulation of rheumatoid synovial cell interleukin-12 production by tumor necrosis factor alpha and CD40 signals. Arthritis Rheum 42:1917–1926

    Article  CAS  PubMed  Google Scholar 

  34. Beekhuizen M, Gierman LM, van Spil WE et al (2013) An explorative study comparing levels of soluble mediators in control and osteoarthritic synovial fluid. Osteoarthr Cartil 21:918–922. https://doi.org/10.1016/j.joca.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  35. Vera-Llonch M, Massarotti E, Wolfe F et al (2008) Cost-effectiveness of abatacept in patients with moderately to severely active rheumatoid arthritis and inadequate response to tumor necrosis factor-alpha antagonists. J Rheumatol 35:1745–1753

    CAS  PubMed  Google Scholar 

  36. Westhovens R, Kremer JM, Moreland LW et al (2009) Safety and efficacy of the selective costimulation modulator abatacept in patients with rheumatoid arthritis receiving background methotrexate: a 5-year extended phase IIB study. J Rheumatol 36:736–742. https://doi.org/10.3899/jrheum.080813

    Article  CAS  PubMed  Google Scholar 

  37. Genovese MC, Tena CP, Covarrubias A et al (2014) Subcutaneous abatacept for the treatment of rheumatoid arthritis: Longterm data from the ACQUIRE trial. J Rheumatol 41:629–639. https://doi.org/10.3899/jrheum.130112

    Article  CAS  PubMed  Google Scholar 

  38. Harigai M, Ishiguro N, Inokuma S et al (2016) Postmarketing surveillance of the safety and effectiveness of abatacept in Japanese patients with rheumatoid arthritis. Mod Rheumatol. https://doi.org/10.3109/14397595.2015.1123211

    PubMed Central  Google Scholar 

  39. Kubo S, Saito K, Hirata S et al (2014) Abatacept inhibits radiographic progression in patients with rheumatoid arthritis: a retrospective analysis of 6 months of abatacept treatment in routine clinical practice: the ALTAIR study. Mod Rheumatol 24:42–51. https://doi.org/10.3109/14397595.2013.854051

    Article  CAS  PubMed  Google Scholar 

  40. Grover VK, Cole DEC, Hamilton DC (2010) Attributing Hardy-Weinberg disequilibrium to population stratification and genetic association in case-control studies. Ann Hum Genet 74:77–87. https://doi.org/10.1111/j.1469-1809.2009.0552.x

    Article  PubMed  Google Scholar 

  41. Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76:967–986. https://doi.org/10.1086/430507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abecasis GR, Auton A, Brooks LD et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65. https://doi.org/10.1038/nature11632

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Monica Guadalupe Santamaría-Olmedo, Daniel Medina-Luna and Yahir Loissell-Baltazar for their technical assistance; and Cristina Hernández-Díaz MD for reviewing the manuscript.

Funding

The study was funded by departmental resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto López-Reyes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Nava, G.A., Fernández-Torres, J., Martínez-Flores, K. et al. The association of AKNA gene polymorphisms with knee osteoarthritis suggests the relevance of this immune response regulator in the disease genetic susceptibility. Mol Biol Rep 45, 151–161 (2018). https://doi.org/10.1007/s11033-018-4148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4148-1

Keywords

Navigation