Skip to main content

Advertisement

Log in

The effect of ITLN1, XCL2 and DOT1L variants on knee osteoarthritis risk in the Han population

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Knee osteoarthritis (KOA) is a complex multifactorial disease, in which genetic factors account for 50% of the risk of osteoarthritis. This study investigated the association between ITLN1, XCL2 and DOT1L variants and KOA risk in the Han population.

Methods

We applied Agena MassARRAY technology platform to genotype five single-nucleotide polymorphisms (SNPs) in 710 KOA patients and 709 controls. The correlation between ITLN1, XCL2 and DOT1L SNPs (rs2274908, rs4282797, rs4301615 and rs3815308) and KOA risk was calculated by logistic regression analysis, with odds ratio (OR) and 95% confidence intervals (CIs). Also, the relationship between genotypes at these different loci and clinical parameters (White blood cell, Eosinophil ratio, Neutrophil count, Eosinophil count, Monocyte ratio and Monocyte count) among patients and controls was analyzed.

Results

In the overall results, rs2274908, rs4301615 and rs3815308 were correlated with KOA susceptibility. After gender stratification analysis, ITLN1 rs2274908 and XCL2 rs4301615 were related to an increased risk of KOA in males, and ITLN1 rs2274908 and DOT1L rs3815308 were related to an increased risk of KOA in females. After age stratification analysis, ITLN1 rs2274908 and XCL2 rs4301615 were correlated with an increased risk of KOA in people aged > 65 year old. After smoking stratification analysis and drinking stratification analysis, ITLN1 rs2274908, XCL2 rs4301615 and DOT1L rs3815308 were still associated with the risk of KOA.

Conclusion

In short, ITLN1 rs2274908, XCL2 rs4301615 and DOT1L rs3815308 were related to KOA risk in the Han population, which was helpful to clarify the pathogenesis of these sites in KOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Please contact the authors for reasonable requests.

References

  1. Loeser RF (2010) Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med 26(3):371–386

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kemnitz J, Wirth W, Eckstein F, Culvenor AG (2018) The role of thigh muscle and adipose tissue in knee osteoarthritis progression in women: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 26(9):1190–1195

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26(3):355–369

    Article  PubMed  PubMed Central  Google Scholar 

  4. Loughlin J (2005) The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med 7(9):1–12

    Article  PubMed  Google Scholar 

  5. Zengini E, Finan C, Wilkinson JM (2016) The genetic epidemiological landscape of hip and knee osteoarthritis: Where are we now and where are we going? J Rheumatol 43(2):260–266

    Article  CAS  PubMed  Google Scholar 

  6. Fain JN, Sacks HS, Buehrer B, Bahouth SW, Garrett E, Wolf RY et al (2008) Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventitial and visceral abdominal depots. Int J Obesity (2005) 32(5):810–815

    Article  CAS  Google Scholar 

  7. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC et al (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 290(6):E1253–E1261

    Article  CAS  PubMed  Google Scholar 

  8. Zhong X, Li X, Liu F, Tan H, Shang D (2012) Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway. Biochem Biophys Res Commun 425(2):401–406

    Article  CAS  PubMed  Google Scholar 

  9. Senolt L, Polanská M, Filková M, Cerezo LA, Pavelka K, Gay S et al (2010) Vaspin and omentin: new adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann Rheum Dis 69(7):1410–1411

    Article  PubMed  Google Scholar 

  10. Largo R, Díez-Ortego I, Sanchez-Pernaute O, López-Armada MJ, Alvarez-Soria MA, Egido J et al (2004) EP2/EP4 signalling inhibits monocyte chemoattractant protein-1 production induced by interleukin 1beta in synovial fibroblasts. Ann Rheum Dis 63(10):1197–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen CY, Fuh LJ, Huang CC, Hsu CJ, Su CM, Liu SC et al (2017) Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: implication of rheumatoid arthritis therapy. Sci Rep 7(1):421

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jenke A, Wilk S, Poller W, Eriksson U, Valaperti A, Rauch BH et al (2013) Adiponectin protects against Toll-like receptor 4-mediated cardiac inflammation and injury. Cardiovasc Res 99(3):422–431

    Article  CAS  PubMed  Google Scholar 

  13. Guo Q, Liu Z, Wang M, Guo S, Cong H, Liu L (2021) Analysis on the expression and value of CCL2 and CCL3 in patients with osteoarthritis. Exp Mol Pathol 118:104576

    Article  CAS  PubMed  Google Scholar 

  14. Fang F, Pan J, Xu L, Su G, Li G, Wang J (2015) Association between chemokine (C-C motif) ligand 2 gene -2518 A/G polymorphism and pancreatitis risk: a meta-analysis. Pancreatology 15(1):53–58

    Article  CAS  PubMed  Google Scholar 

  15. Xu Z, Li J, Yang H, Jiang L, Zhou X, Huang Y et al (2019) Association of CCL2 gene variants with osteoarthritis. Arch Med Res 50(3):86–90

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T et al (2011) DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 25(3):263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng Y, Yang Y, Ortega MM, Copeland JN, Zhang M, Jacob JB et al (2010) Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood 116(22):4483–4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monteagudo S, Cornelis FMF, Aznar-Lopez C, Yibmantasiri P, Guns LA, Carmeliet P et al (2017) DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat Commun 8:15889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Castaño Betancourt MC, Cailotto F, Kerkhof HJ, Cornelis FM, Doherty SA, Hart DJ et al (2012) Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci USA 109(21):8218–8223

    Article  PubMed  PubMed Central  Google Scholar 

  20. Silman AJ (1988) The 1987 revised American Rheumatism Association criteria for rheumatoid arthritis. Br J Rheumatol 27(5):341–343

    Article  CAS  PubMed  Google Scholar 

  21. Jha CK, Mir R, Elfaki I, Javid J, Babakr AT, Banu S et al (2019) Evaluation of the association of omentin 1 rs2274907 A>T and rs2274908 G>a gene polymorphisms with coronary artery disease in Indian population: a case control study. J Personaliz Med 9(2):30

    Article  Google Scholar 

  22. Hulin-Curtis SL, Bidwell JL, Perry MJ (2013) Association between CCL2 haplotypes and knee osteoarthritis. Int J Immunogenet 40(4):280–283

    Article  CAS  PubMed  Google Scholar 

  23. Mahmoudi T, Boj SF, Hatzis P, Li VS, Taouatas N, Vries RG et al (2010) The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/β-catenin coactivators essential for intestinal homeostasis. PLoS Biol 8(11):e1000539

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y et al (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24(6):574–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sassi N, Laadhar L, Allouche M, Achek A, Kallel-Sellami M, Makni S et al (2014) WNT signaling and chondrocytes: from cell fate determination to osteoarthritis physiopathology. J Recept Signal Transduct Res 34(2):73–80

    Article  CAS  PubMed  Google Scholar 

  26. Warde N (2011) Osteoarthritis: sclerostin inhibits Wnt signaling in OA chondrocytes and protects against inflammation-induced cartilage damage. Nat Rev Rheumatol 7(8):438

    Article  PubMed  Google Scholar 

  27. Zhou Y, Bi F, Yang G, Chen J (2014) Association between single nucleotide polymorphisms of DOT1L gene and risk of knee osteoarthritis in a Chinese Han population. Cell Biochem Biophys 70(3):1677–1682

    Article  CAS  PubMed  Google Scholar 

  28. García-Alvarado FJ, Delgado-Aguirre HA, Rosales-González M, González-Martínez MDR, Ruiz-Flores P, González-Galarza FF et al (2020) Analysis of polymorphisms in the MATN3 and DOT1L genes and CTX-II urinary levels in patients with knee osteoarthritis in a northeast Mexican-mestizo population. Genet Test Mol Biomarkers 24(2):105–111

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all participants and volunteers of the Second Hospital of Tangshan in this study.

Funding

The study was supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region (2020D01C142) and the Key Research and Development Project of Xinjiang Uygur Autonomous Region (2021B03006-1).

Author information

Authors and Affiliations

Authors

Contributions

RZ conceived and designed the study. CW took part in the data search and selection of data, analyzed the data, and wrote the manuscript. CW and RZ contributed to the subject screening and the collection and preparation of control DNA samples. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ruichun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Written informed consent was obtained from all participants prior to their participation. The research protocol was approved by the Ethics Committee of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region. The ethical approval was consistent with the standards of the Declaration of Helsinki.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, R. The effect of ITLN1, XCL2 and DOT1L variants on knee osteoarthritis risk in the Han population. Arch Orthop Trauma Surg 143, 4821–4831 (2023). https://doi.org/10.1007/s00402-023-04799-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-04799-w

Keywords

Navigation