Skip to main content
Log in

Dishevelled proteins and CYLD reciprocally regulate each other in CML cell lines

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dishevelled (Dvl) proteins are activated by Wnt pathway stimulation and have crucial roles in the regulation of β-catenin destruction complex. CYLD is a tumor suppressor and a deubiquitination enzyme. CYLD negatively regulates the Wnt/β-catenin signaling pathway by deubiquitinating Dvl proteins. Loss of function and mutations of CYLD were linked to different types of solid tumors. Loss of function in CYLD is associated with Dvl hyper ubiquitination, resulting in the transmission of Wnt signaling to downstream effectors. β-catenin upregulation is observed during disease progression in chronic myeloid leukemia (CML). Deregulated Dvl signaling may be a reason for β-catenin activation in CML; and CYLD may contribute to Dvl deregulation. First, we evaluated mRNA expression in three CML cell lines and mRNA expression of the CYLD gene was found to be present in all (K562, MEG01, KU812). Unlike solid tumors sequencing revealed no mutations in the coding sequences of the CYLD gene. DVL genes were silenced by using a pool of siRNA oligonucleotides and gene expression differences in CYLD was determined by RT-PCR and western blot. CYLD protein expression decreased after Dvl silencing. An opposite approach of overexpressing Dvl proteins resulted in upregulated CYLD expression. While previous reports have described CYLD as a regulator of DVL proteins; our data suggests the presence of a more complicated reciprocal regulatory mechanism in CML cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  2. Gao C, Chen Y-G (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22(5):717–727

    Article  CAS  PubMed  Google Scholar 

  3. Wharton KA (2003) Runnin’with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 253(1):1–17

    Article  CAS  PubMed  Google Scholar 

  4. Komander D (2010) CYLD tidies up dishevelled signaling. Mol Cell 37(5):589–590

    Article  CAS  PubMed  Google Scholar 

  5. Khan AS, Hojjat-Farsangi M, Daneshmanesh AH, Hansson L, Kokhaei P, Österborg A, Mellstedt H, Moshfegh A (2016) Dishevelled proteins are significantly upregulated in chronic lymphocytic leukaemia. Tumor Biol 39(7):11947–11957

    Article  Google Scholar 

  6. Li J, Guo G, Li J, Hao J, Zhang J, Guo Y, Yu H (2014) The expression and significance of dishevelled in human glioma. J Surg Res 192(2):509–514

    Article  CAS  PubMed  Google Scholar 

  7. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM (2003) Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22(46):7218–7221

    Article  CAS  PubMed  Google Scholar 

  8. Zhou G, Ye J, Sun L, Zhang Z, Feng J (2016) Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma. J Mol Histol 47(3):287–295

    Article  CAS  PubMed  Google Scholar 

  9. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25(2):160–165

    Article  CAS  PubMed  Google Scholar 

  10. Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424(6950):801–805

    Article  CAS  PubMed  Google Scholar 

  11. Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM (2010) Loss of the tumor suppressor CYLD enhances Wnt/β-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell 37(5):607–619

    Article  CAS  PubMed  Google Scholar 

  12. Massoumi R (2011) CYLD: a deubiquitination enzyme with multiple roles in cancer. Future Oncol 7(2):285–297

    Article  CAS  PubMed  Google Scholar 

  13. Sun S (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ 17(1):25–34

    Article  CAS  PubMed  Google Scholar 

  14. Nagy N, Farkas K, Kemény L, Széll M (2015) Phenotype–genotype correlations for clinical variants caused by CYLD mutations. Eur J Med Genet 58(5):271–278

    Article  PubMed  Google Scholar 

  15. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A (2004) Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–667

    Article  CAS  PubMed  Google Scholar 

  16. von Bubnoff N, Duyster J (2010) Chronic myelogenous leukemia. Dtsch Arztebl Int 107:114–121

    Google Scholar 

  17. Ashihara E, Takada T, Maekawa T (2015) Targeting the canonical Wnt/β-catenin pathway in hematological malignancies. Cancer Sci 106(6):665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukumoto S, Hsieh C-M, Maemura K, Layne MD, Yet S-F, Lee K-H, Matsui T, Rosenzweig A, Taylor WG, Rubin JS (2001) Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 276(20):17479–17483

    Article  CAS  PubMed  Google Scholar 

  19. Kishida S, Yamamoto H, Hino S-i, Ikeda S, Kishida M, Kikuchi A (1999) DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol Cell Biol 19(6):4414–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao C, Xiao G, Hu J (2014) Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci 4(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhong S, Fields C, Su N, Pan Y, Robertson KD (2007) Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 26(18):2621–2634

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi M, Jono H, Shinriki S, Nakamura T, Guo J, Sueta A, Tomiguchi M, Fujiwara S, Yamamoto-Ibusuki M, Murakami K-i (2014) Clinical significance of CYLD downregulation in breast cancer. Breast Cancer Res Treat 143(3):447–457

    Article  CAS  PubMed  Google Scholar 

  23. Alameda J, Fernandez-Acenero M, Moreno-Maldonado R, Navarro M, Quintana R, Page A, Ramírez A, Bravo A, Casanova M (2011) CYLD regulates keratinocyte differentiation and skin cancer progression in humans. Cell Death Dis 2(9):e208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hellerbrand C, Bumes E, Bataille F, Dietmaier W, Massoumi R, Bosserhoff AK (2006) Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28(1):21–27

    Article  PubMed  Google Scholar 

  25. Jenner MW, Leone PE, Walker BA, Ross FM, Johnson DC, Gonzalez D, Chiecchio L, Cabanas ED, Dagrada GP, Nightingale M (2007) Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood 110(9):3291–3300

    Article  CAS  PubMed  Google Scholar 

  26. Schiffer C, Hehlmann R, Larson R (2003) Perspectives on the treatment of chronic phase and advanced phase CML and Philadelphia chromosome positive ALL1. Leukemia 17(4):691–699

    Article  CAS  PubMed  Google Scholar 

  27. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    Article  CAS  PubMed  Google Scholar 

  28. Lugo TG, Pendergast A-M, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247(4946):1079–1082

    Article  CAS  PubMed  Google Scholar 

  29. Chang G, Zhang H, Wang J, Zhang Y, Xu H, Wang C, Zhang H, Ma L, Li Q, Pang T (2013) CD44 targets Wnt/β-catenin pathway to mediate the proliferation of K562 cells. Cancer Cell Int 13(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) (Project Code: 1001, Grant Number: 114Z225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ogun Sercan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çalışkan, C., Pehlivan, M., Yüce, Z. et al. Dishevelled proteins and CYLD reciprocally regulate each other in CML cell lines. Mol Biol Rep 44, 391–397 (2017). https://doi.org/10.1007/s11033-017-4122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4122-3

Keywords

Navigation