Skip to main content

Advertisement

Log in

The synergistic risk effect of apolipoprotein ε4 and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) haplotype for Alzheimer’s disease

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a complex and multifactorial disease with the contribution of several genes and polymorphisms to its development. Among these genes, the APOEε4 is the best known risk factor for AD. Methylation is associated with APOE expression and AD development. Recently, we found an association of the TGG haplotype in the DNMT3B gene, one of the catalyst enzyme for methylation, with AD. Therefore, the objective of the study was to investigate whether APOEε4 and TGG haplotype have an synergistic effect on AD. The sample was composed of 212 Caucasian individuals (108 healthy controls and 104 with AD by NINCDS-ADRDA and DSM-IV-TR criteria) from southern Brazil. The genetic analyses were performed by real time PCR for TaqMan® assay. Multivariate logistic regression was performed categorizing groups according to presence of APOEε4 and/or TGG haplotype as an independent variable for outcome AD. The presence of TGG haplotype plus the allele APOEε4 were strongly associated with AD [OR 11.13; 95 % CI (4.25–29.16); P < 0.001]. This association had a higher risk than each risk factor alone. We found a strong association of the interaction of DNMT3B gene with the APOEε4 in this sample of AD patients. The presence of TGG haplotype and APOEε4 significantly increased the risk of developing the disease, showing an synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loy CT, Schofield PR, Turner AM, Kwok JB (2014) Genetics of dementia. Lancet 383:828–840. doi:10.1016/S0140-6736(13),60630-3

    Article  CAS  PubMed  Google Scholar 

  2. Montag C, Kunz L, Axmacher N, Sariyska R, Lachmann B, Reuter M (2014) Common genetic variation of the APOE gene and personality. BMC Neurosci 15:64. doi:10.1186/1471-2202-15-64

    Article  PubMed  PubMed Central  Google Scholar 

  3. Michaelson DM (2014) APOEε4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement 10:861–868. doi:10.1016/j.jalz.2014.06.015

    Article  PubMed  Google Scholar 

  4. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32:1161–1180. doi:10.1016/j.neurobiolaging.2010.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Yu JT, Tan MS, Jiang T, Tan L (2013) Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res Rev 12:1024–1041. doi:10.1016/j.arr.2013.05.00

    Article  CAS  PubMed  Google Scholar 

  6. Wang S-C, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698. doi:10.1371/journal.pone.0002698

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ma Y, Smith CE, Lai CQ, Irvin MR, Parnell LD, Lee YC, Pham L, Aslibekyan S, Claas SA, Tsai MY, Borecki IB, Kabagambe EK, Berciano S, Ordovás JM, Absher DM, Arnett DK (2015) Genetic variants modify the effect of age on APOE methylation in the genetics of lipid lowering drugs and diet network study. Aging Cell 14:49–59. doi:10.1111/acel.12293

    Article  PubMed  Google Scholar 

  8. Fitzsimons CP, van Bodegraven E, Schouten M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP, Biojone C, Joca S, Steinbusch HW, Lunnon K, Mastroeni DF, Mill J, Lucassen PJ, Coleman PD, van den Hove DL, Rutten BP (2014) Epigenetic regulation of adult neural stem cells: implications for Alzheimer’s disease. Mol Neurodegener 9:25. doi:10.1186/1750-1326-9-25

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coppede F, Zitarosa MT, Migheli F, Lo Gerfo A, Bagnoli S, Dardano A, Nacmias B, Mancuso M, Monzani F, Siciliano G, Sorbi S, Migliore L (2012) DNMT3B promoter polymorphisms and risk of late onset Alzheimer’s disease. Curr Alzheimer Res 9:550–554. doi:10.2174/156720512800618062

    Article  CAS  PubMed  Google Scholar 

  10. Chouliaras L, Kenis G, Visser PJ, Scheltens P, Tsolaki M, Jones RW, Kehoe PG, Graff C, Girtler NG, Wallin ÅK, Rikkert MO, Spiru L, Elias-Sonnenschein LS, Ramakers IH, Pishva E, van Os J, Steinbusch HW, Verhey FR, van den Hove DL, Rutten BP (2015) DNMT3A moderates cognitive decline in subjects with mild cognitive impairment: replicated evidence from two mild cognitive impairment cohorts. Epigenomics 7:533–537. doi:10.2217/epi.15.22

    Article  CAS  PubMed  Google Scholar 

  11. Pezzi JC, Ens CM, Borba EM, Schumacher-Schuh AF, de Andrade FM, Chaves ML, Fiegenbaum M, Camozzato AL (2014) DNA methyltransferase haplotype is associated with Alzheimer’s disease. Neurosci Lett 579:70–74. doi:10.1016/j.neulet.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  12. Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Casillas MA Jr, Lopatina N, Andrews LG, Tollefsbol TO (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252:33–43. doi:10.1023/A:1025548623524

    Article  CAS  PubMed  Google Scholar 

  14. Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q (2002) A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res 62:4992–4995

    CAS  PubMed  Google Scholar 

  15. Yu CE, Foraker J (2015) Epigenetic considerations of the APOE gene. Biomol Concepts 6:77–84. doi:10.1515/bmc-2014-0039

    CAS  PubMed  Google Scholar 

  16. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. doi:10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  17. American Psychiatric Association (2013) Diagnostics and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  18. Lahiri DK, Nurnberger JI Jr (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10:241–252. doi:10.1016/S1474-4422(10)70325-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murphy TM, Mullins N, Ryan M, Foster T, Kelly C, McClelland R, O’Grady J, Corcoran E, Brady J, Reilly M, Jeffers A, Brown K, Maher A, Bannan N, Casement A, Lynch D, Bolger S, Buckley A, Quinlivan L, Daly L, Kelleher C, Malone KM (2013) Genetic variation in DNMT3B and increased global DNA methylation is associated with suicide attempts in psychiatric patients. Genes Brain Behav 12:125–132. doi:10.1111/j.1601-183X.2012.00865

    Article  CAS  PubMed  Google Scholar 

  21. Talwar P, Sinha J, Grover S, Agarwal R, Kushwaha S, Srivastava MV, Kukreti R (2016) Meta-analysis of apolipoprotein E levels in the cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Sci 360:179–187. doi:10.1016/j.jns.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  22. Darreh-Shori T, Modiri N, Blennow K, Baza S, Kamil C, Ahmed H, Andreasen N, Nordberg A (2011) The apolipoprotein E epsilon4 allele plays pathological roles in AD through high protein expression and interaction with butyrylcholinesterase. Neurobiol Aging 32:1236–1248. doi:10.1016/j.neurobiolaging.2009.07.015

    Article  CAS  PubMed  Google Scholar 

  23. Darreh-Shori T, Forsberg A, Modiri N, Andreasen N, Blennow K, Kamil C, Ahmed H, Almkvist O, Långström B, Nordberg A (2011) Differential levels of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs of Alzheimer’s disease in the brain in vivo. Neurobiol Aging 32:2320.e15–2320.e32. doi:10.1016/j.neurobiolaging.2010.04.028

    Article  CAS  Google Scholar 

  24. Vijayaraghavan S, Maetzler W, Reimold M, Lithner CU, Liepelt-Scarfone I, Berg D, Darreh-Shori T (2014) High apolipoprotein E in cerebrospinal fluid of patients with Lewy body disorders is associated with dementia. Alzheimers Dement 10:530–540.e1. doi:10.1016/j.jalz.2013.03.010

    Article  PubMed  Google Scholar 

  25. Kumar R, Nordberg A, Darreh-Shori T (2016) Amyloid-beta peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAbetaACs. Brain 139:174–192. doi:10.1093/brain/awv318

    Article  PubMed  Google Scholar 

  26. Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K, Bertelsen S, Hinrichs A, Fagan AM, Holtzman DM, Morris JC, Goate AM, Alzheimer’s Disease Neuroimaging Initiative (2012) Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet 21:4558–4571. doi:10.1093/hmg/dds296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fukumoto H, Ingelsson M, Gårevik N, Wahlund LO, Nukina N, Yaguchi Y, Shibata M, Hyman BT, Rebeck GW, Irizarry MC (2003) APOE epsilon 3/epsilon 4 heterozygotes have an elevated proportion of apolipoprotein E4 in cerebrospinal fluid relative to plasma, independent of Alzheimer’s disease diagnosis. Exp Neurol 183:249–253. doi:10.1016/S0014-4886(03)00088-8

    Article  CAS  PubMed  Google Scholar 

  28. Karch CM, Cruchaga C, Goate AM (2014) Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83:11–26. doi:10.1016/j.neuron.2014.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lyall DM, Royle NA, Harris SE, Bastin ME, Maniega SM, Murray C, Lutz MW, Saunders AM, Roses AD, del Valdés Hernández MC, Starr JM, Porteous DJ, Wardlaw JM, Deary IJ (2013) Alzheimer’s disease susceptibility genes APOE and TOMM40, and hippocampal volumes in the Lothian birth cohort 1936. PLoS One 8:e80513. doi:10.1371/journal.pone.0080513

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bekris LM, Yu CE, Bird TD, Tsuang DW (2010) Genetics of Alzheimer disease. J Geriatr Psychiatr Neurol 23:213–227. doi:10.1177/0891988710383571

    Article  Google Scholar 

  31. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2010) Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 31:2025–2037. doi:10.1016/j.neurobiolaging.2008

    Article  CAS  PubMed  Google Scholar 

  32. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–8569. doi:10.1016/j.neuron.2007.02.022

    Article  CAS  PubMed  Google Scholar 

  33. Levenson JM, Choi S, Lee SY, Cao YA, Ahn HJ, Worley KC, Pizzi M, Liou HC, Sweatt JD (2004) A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci 24:3933–3943. doi:10.1523/JNEUROSCI.5646-03.2004

    Article  CAS  PubMed  Google Scholar 

  34. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118. doi:10.1038/nrn1604

    Article  CAS  PubMed  Google Scholar 

  35. Roberson ED, Sweatt JD (1999) A biochemical blueprint for long-term memory. Learn Mem 6:381–388

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, Kozubek J, Obholzer N, Leurgans SE, Schneider JA, Meissner A, De Jager PL, Bennett DA (2015) Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 72:15–24. doi:10.1001/jamaneurol.2014.3049

    Article  PubMed  PubMed Central  Google Scholar 

  37. Di Francesco A, Arosio B, Falconi A, Micioni Di Bonaventura MV, Karimi M, Mari D, Casati M, Maccarrone M, D’Addario C (2015) Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain Behav Immun 45:139–144. doi:10.1016/j.bbi.2014.11.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the support given to this research by National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Analuiza Camozzato.

Ethics declarations

Conflict of Interest

Regarding research, article writing and/or publishing the authors state no potential conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bem, C.M.B.E., Pezzi, J.C., Borba, E.M. et al. The synergistic risk effect of apolipoprotein ε4 and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) haplotype for Alzheimer’s disease. Mol Biol Rep 43, 653–658 (2016). https://doi.org/10.1007/s11033-016-3999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3999-6

Keywords

Navigation