Skip to main content
Log in

Genetic diversity of Guangxi chicken breeds assessed with microsatellites and the mitochondrial DNA D-loop region

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The domestic chicken (Gallus gallus domesticus) is an excellent model for genetic studies of phenotypic diversity. The Guangxi Region of China possesses several native chicken breeds displaying a broad range of phenotypes well adapted to the extreme hot-and-wet environments in the region. We thus evaluated the genetic diversity and relationships among six native chicken populations of the Guangxi region and also evaluated two commercial breeds (Arbor Acres and Roman chickens). We analyzed the sequences of the D-loop region of the mitochondrial DNA (mtDNA) and 18 microsatellite loci of 280 blood samples from six Guangxi native chicken breeds and from Arbor Acres and Roman chickens, and used the neighbor-joining method to construct the phylogenetic tree of these eight breeds. Our results showed that the genetic diversity of Guangxi native breeds was relatively rich. The phylogenetic tree using the unweighed pair-group method with arithmetic means (UPGAM) on microsatellite marks revealed two main clusters. Arbor Acres chicken and Roman chicken were in one cluster, while the Guangxi breeds were in the other cluster. Moreover, the UPGAM tree of Guangxi native breeds based on microsatellite loci was more consistent with the genesis, breeding history, differentiation and location than the mtDNA D-loop region. STRUCTURE analysis further confirmed the genetic structure of Guangxi native breeds in the Neighbor-Net dendrogram. The nomenclature of mtDNA sequence polymorphisms suggests that the Guangxi native chickens are distributed across four clades, but most of them are clustered in two main clades (B and E), with the other haplotypes within the clades A and C. The Guangxi native breeds revealed abundant genetic diversity not only on microsatellite loci but also on mtDNA D-loop region, and contained multiple maternal lineages, including one from China and another from Europe or the Middle East.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAO, Rischkowsky B, Pilling D (eds) (2007) The state of the world’s animal genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  2. Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol 38:12–19. doi:10.1016/j.ympev.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  3. Miao YW, Peng MS, Wu GS, Ouyang YN, Yang ZY, Yu N, Liang JP, Pianchou G, Beja-Pereira A, Mitra B, Palanichamy MG, Baig M, Chaudhuri TK, Shen YY, Kong QP, Murphy RW, Yao YG, Zhang YP (2013) Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110:277–282. doi:10.1038/hdy.2012.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao SG (2006) Genetic diversity of mtDNA sequences in Chinese indigenous chickens. Dissertation, Gansu Agricultural University (In Chinese)

  5. Tadano R, Sekino M, Nishibori M, Tsudzuki M (2007) Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds. Poult Sci 86:460–469. doi:10.1093/ps/86.3.460

    Article  CAS  PubMed  Google Scholar 

  6. Groeneveld LF, Lenstra JA, Eding H, Toro MA, Scherf B, Pilling D, Negrini R, Finlay EK, Jianlin H, Groeneveld E, Weigend S (2010) Genetic diversity in farm animals—a review. Anim Genet 41:6–31. doi:10.1111/j.1365-2052.2010.02038.x

    Article  PubMed  Google Scholar 

  7. Ceccobelli S, di Lorenzo P, Lancioni H, Monteagudo Ibáñez LV, Tejedor MT, Castellini C, Landi V, Martínez Martínez A, Delgado Bermejo JV, Vega Pla JL, Leon Jurado JM, García N, Attard G, Grimal A, Stojanovic S, Kume K, Panella F, Weigend S, Lasagna E (2015) Genetic diversity and phylogeographic structure of sixteen Mediterranean chicken breeds assessed with microsatellites and mitochondrial DNA. Livest Sci 175:27–36. doi:10.1016/j.livsci.2015.03.003

    Article  Google Scholar 

  8. Wilkinson S, Wiener P, Teverson D, Haley CS, Hocking PM (2011) Characterization of the genetic diversity, structure and admixture of British chicken breeds. Anim Genet 43:552–563. doi:10.1111/j.1365-2052.2011.02296.x

    Article  PubMed  Google Scholar 

  9. Muchadeyi FC, Eding H, Wollny CBA, Groeneveld E, Makuka SM, Shamseldin R, Simianer H, Weigend S (2007) Absence of population substructuring in Zimbabwe chicken ecotypes inferred using microsatellite analysis. Anim Genet 38:332–339. doi:10.1111/j.1365-2052.2007.01606.x

    Article  CAS  PubMed  Google Scholar 

  10. Thomson VA, Ophélie L, Austin JJ, Hunt TL, Burney DA, Denham T, Rawlence NJ, Wood JR, Gongora J, Fink LG, Linderholm A, Dobney K, Larson G, Cooper A (2014) Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proc Nat Acad Sci USA 111:4826–4831. doi:10.1073/pnas.1320412111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. FAO (2004) Guideline for development of national management of farm animal genetic diversity. Recommended microsatellite markers, available at: http://dad.fao.org

  12. Tadano R, Sekino M, Nishibori M, Tsudzuki M (2007) Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds. Poult Sci 86:460–469

    Article  CAS  PubMed  Google Scholar 

  13. Abiye Shenkut A, Sofia M, Johansson AM (2015) Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers. PLoS ONE 4:1–13. doi:10.1371/journal.pone.0120580

    Google Scholar 

  14. Qu LJ, Li XY, Xu GF, Chen KW, Yang HJ, Zhang LC, Wu GQ, Hou ZC, Xu GY, Yang N (2006) Microsatellite analysis of genetic diversity in China native chicken populations. Sci China Ser C-life Sci 36:17–26 (In Chinese)

    Google Scholar 

  15. Librado P, Rozas J (2009) DnaSP v 5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  16. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. doi:10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  17. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283. doi:10.2307/2410454

    Article  Google Scholar 

  18. Nei M, TajimaF Tateno Y (1983) Accuracy of estimated phylogenetic tree from molecular data. II. Gene frequency data. J Mol Evol 19:153–170. doi:10.1007/BF02300753

    Article  CAS  PubMed  Google Scholar 

  19. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641

    Article  Google Scholar 

  20. Botstein D, White RL, Skolnick MH, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet 32:314–331

    CAS  Google Scholar 

  21. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi:10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Tamura K, Nei M (2004) Mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  CAS  PubMed  Google Scholar 

  23. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 7:574–578

    Google Scholar 

  24. Jakobsson M, Rosenberg N (2007) Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 14:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  Google Scholar 

  25. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 1:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Google Scholar 

  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of cluster of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  27. Bhuiyan MSA, Chen SY, Faruque S, Bhuiyan AKFH, Beja-Pereira A (2013) Genetic diversity and maternal origin of Bangladeshi chicken. Mol Biol Rep 40:4123–4128. doi:10.1007/s11033-013-2522-6

    Article  CAS  PubMed  Google Scholar 

  28. Kawaba K, Worawat R, Taura S, Shimogiri T, Nishida T, Okamoto S (2014) Genetic diversity of mtDNA D-loop polymorphisms in Laotian native fowl populations. Asian Australas J Anim Sci 27:19–23. doi:10.5713/ajas.2013.13443

    Article  Google Scholar 

  29. Hoque MR, Choi NR, Sultana H, Kang BS, Heo KN, Hong SK, Jo CJ, Lee H (2013) Phylogenetic analysis of a privately-owned Korean native chicken population using mtDNA D-loop variations. Asian Australas J Anim 26:157–162. doi:10.5713/ajas.2012.12459

    Article  CAS  Google Scholar 

  30. Torroni A, Schurr TG, Cabell MF, Brown MD, Neel JV, Larsen M (1993) Asian affinities and continental radiation of the four founding native american mtdnas. Am J Hum Genet 53:563–590

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ward RH, Redd A, Valencia D, Frazier B, Bo S (1993) Genetic and linguistic differentiation in the Americas. Proc Natl Acad Sci USA 22:10663–10667. doi:10.1073/pnas.90.22.10663

    Article  Google Scholar 

  32. Pirany N, Romanov MN, Prasad DT, Ganpule SP, Devegowda G (2007) Microsatellite analysis of genetic diversity in Indian chicken populations. J Poult Sci 44:19–28. doi:10.2141/jpsa.44.19

    Article  CAS  Google Scholar 

  33. Osei-Amponsah R, Kayang BB, Naazie A, Osei YD, Youssao IAK, Yapi-Gnaore VC, Tixier-Boichard M, Rognon X (2010) Genetic diversity of Forest and Savannah chicken populations of Ghana as estimated by microsatellite markers. Anim Sci J 81:297–303. doi:10.1111/j.1740-0929.2010.00749.x

    Article  CAS  PubMed  Google Scholar 

  34. Ohno S (1997) The one ancestor per generation rule and three other rules of mitochondrial inheritance. Proc Natl Acad Sci USA 94:8033–8035. doi:10.1073/pnas.94.15.8033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cuc NTK, Weigend S, Tieu HV, Simianer H (2011) Conservation priorities and optimum allocation of conservation funds for Vietnamese local chicken breeds. J Anim Breed Genet 128:284–294. doi:10.1111/j.1439-0388.2010.00911.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to think Dr. Fred Bogott at the Medical Center, Austin of Minnesota for his excellent English editing of the manuscript. This work was supported by Guangxi Provincial Natural Science Foundation of China (NO. 2013GXNSFDA019013 to Dr. Yuying Liao).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhong Joshua Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Mo, G., Sun, J. et al. Genetic diversity of Guangxi chicken breeds assessed with microsatellites and the mitochondrial DNA D-loop region. Mol Biol Rep 43, 415–425 (2016). https://doi.org/10.1007/s11033-016-3976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3976-0

Keywords

Navigation