Skip to main content
Log in

Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Late embryogenesis abundant (LEA) proteins were first described as accumulating late in plant seed development. They were also shown to be involved in plant responses to environmental stress and as well as in bacteria, yeast and invertebrates. They are known to play crucial roles in dehydration tolerance. This study describes a genome-wide analysis of LEA proteins and the corresponding genes in Solanum tuberosum. Twenty-nine LEA family members encoding genes in the Solanum genome were identified. Phylogenetic analyses allowed the classification of the potato LEA proteins into nine distinct groups. Some of them were identified as putative orthologs of Arabidopsis and rice LEA genes. In silico analyses confirmed the hydrophilicity of most of the StLEA proteins, whereas some of them can be folded. The in silico expression analyses showed that the identified genes displayed tissue-specific, stress and hormone-responsive expression profiles. Five StLEA classified as dehydrins were selected for expression analyses under salt and drought stresses. The data revealed that they were induced by both stresses. The analyses indicate that several factors such us developmental stages, hormones, and dehydration, can regulate the expression and activities of LEA protein. This report can be helpful for the further functional diversity studies and analyses of LEA proteins in potato. These genes can be overexpressed to improve potato abiotic stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shih MD, Hsieh TY, Lin TP, Hsing YC, Hoekstra FA (2010) Characterization of two soybeans (Glycine max L.) LEA IV proteins by circular dichroism and fourier transform infrared spectrometry. Plant Cell Physiol 51:395–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L (2012) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep. doi:10.1007/s11033-012-2250-3

    Google Scholar 

  3. Lan T, Gao J, Zeng QY (2013) Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree Genet Genomes 9:253–264

    Article  Google Scholar 

  4. Dure L (1993) Structural motifs in LEA proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville, pp 91–103

    Google Scholar 

  5. Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance. Plant signal behav 6:1503–1509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brini F, Hanin M, Lumbreras V, Irar S, Pagès M, Masmoudi K (2007) Functional characterization of DHN5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28

    Article  CAS  Google Scholar 

  7. Finkelstein RR, Rock C (2002) Abscisic acid biosynthesis and response. In: Meyerowitz EM, Somerville CR (eds) The Arabidopsis book http://www.aspb.org/publications/arabidopsis

  8. Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  PubMed  Google Scholar 

  9. Filiz E, Ozyigit II, Tombuloglu H, Koc I (2013) In silico comparative analysis of LEA (Late embryogenesis abundant) proteins in Brachypodium distachyon L. Plant Omics 6:433–440

    CAS  Google Scholar 

  10. Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  11. Battista JR, Park MJ, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139

    Article  CAS  PubMed  Google Scholar 

  12. Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098

    Article  CAS  PubMed  Google Scholar 

  13. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  14. Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant, Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  15. Irar SEO, Pagès M, Goday A (2006) Towards the identification of late-embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS. Proteomics 6:175–185

    Article  Google Scholar 

  16. Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Tunnacliffe A, Wise M (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften. doi:10.1007/s00114-007-0254-y

    PubMed  Google Scholar 

  18. Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hundertmark M, Hincha DK (2008) LEA (Late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118. doi:10.1186/1471-2164-9-118

    Article  PubMed Central  PubMed  Google Scholar 

  20. Espelund M, Saeboe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS (1992) Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J2:241–252

    Google Scholar 

  21. Arumingtyas EL, Savitri ES, Purwoningrahayu RD (2013) Protein profiles and dehydrin accumulation in some soybean varieties (Glycine max L. Merr) in drought stress conditions. Am J Plant Sci 4:134–141

    Article  CAS  Google Scholar 

  22. Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z (2014) Classification and expression diversification of wheat dehydrin genes. Plant Sci 214:113–120

    Article  CAS  PubMed  Google Scholar 

  23. Xu H, Yang Y, Xie L, Li X, Feng C, Chen J, Xu C (2014) Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica). PLoS One. doi:10.1371/journal.pone.0087575

    Google Scholar 

  24. Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  CAS  PubMed  Google Scholar 

  26. Galau GA, Wang HYC, Hughes DW (1993) Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins. Plant Physiol 101:695–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Higgins D, Thompson J, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731e9

    Article  Google Scholar 

  29. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  30. Li WH (1993) Unbiased estimation of the rates of synonymous and non synonymous substitution. J Mol Evol 36:96–99

    Article  CAS  PubMed  Google Scholar 

  31. Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    CAS  PubMed  Google Scholar 

  32. Xu X, Pan S, Cheng S (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  PubMed  Google Scholar 

  33. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  34. Murachige T, skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  Google Scholar 

  35. Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143

    Article  CAS  Google Scholar 

  36. Vaewoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acid Res 17:23–62

    Google Scholar 

  37. Saidi MN, Gargouri-Bouzid R, Rayanni M, Drira N (2009) Optimization of RNA isolation from brittle leaf disease affected date palm leaves and construction of a subtractive cDNA library. Mol Biotechnol 41:63–68

    Article  CAS  PubMed  Google Scholar 

  38. Degenhardt J, Al-MasriA N, Kurkcuoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335

    Article  CAS  PubMed  Google Scholar 

  39. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

  40. Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  41. Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant, Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  42. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg E, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  PubMed  Google Scholar 

  43. Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  44. Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008) Importance of lineage specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Massa AN, Childs KL, Lin H, Bryan GJ, Giuliano G, Buell CR (2011) The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44. PLoS ONE. doi:10.1371/journal.pone.002680

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by the Tunisian Ministry of High Education and Scientific Research. The authors are grateful to Anne-Lise Haenni from the Institute Jacques Monod (France) for reading and improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Charfeddine.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charfeddine, S., Saïdi, M.N., Charfeddine, M. et al. Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins. Mol Biol Rep 42, 1163–1174 (2015). https://doi.org/10.1007/s11033-015-3853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3853-2

Keywords

Navigation