Skip to main content
Log in

Molecular cloning of two molluscan caspases and gene functional analysis during Crassostrea angulata (Fujian oyster) larval metamorphosis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Caspases have been demonstrated to possess important functions in apoptosis and immune system in vertebrate. But there is less information reported on the oyster larval development. In the present work, two full-length molluscan caspase genes, named Cacaspase-2 and Cacaspase-3, were characterized for the first time from Fujian oyster, Crassostrea angulata. Which respectively encode two predicted proteins both containing two caspase domains of p20 and p10 including the cysteine active site pentapeptide “QACRG” and the histidine active site signature. Otherwise Cacaspase-2 also contains a caspase recruitment domain. Homology and phylogenetic analysis showed that Cacaspase-2 shared high similarity with initiator caspase-2 groups, but Cacaspase-3 clustered together with executioner caspase-3 groups. Cacaspase-2 and Cacaspase-3 mRNA were both highly expressed in gills and labial palp and were significantly expressed highly in larvae during settlement and metamorphosis. Through the whole mount in situ hybridization, the location of Cacaspase-2 is in the foot of the oyster larvae and the location of Cacaspase-3 is in both the foot and velum tissues. These results implied that Cacaspase-2 and Cacaspase-3 genes play a key role in the loss of foot and Cacaspase-3 gene has an important function in the loss of velum during larvae metamorphosis in C. angulata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chia FS, Rice ME (1978) Settlement and metamorphosis of marine invertebrate larvae. Elselvier, New York

    Google Scholar 

  2. Chia FS (1989) Differential larval settlement of benthic marine invertebrates. In: Ryland JS, Tyler PA (eds) Olsen & Olsen, Fredensborg, Denmark Reproduction, genetics and distribution of marine organisms. Proceedings of the 23rd European marine biology symposium, pp 3–12

  3. Kerr JFR, Searle J, Harmon BV, Bishop CJ (1987) Apoptosis. In: Potten CS (ed) Perspectives on mammalian cell death. Oxford University Press, Oxford, pp 93–128

  4. Arends MJ, Wyllie AH, Arends MJ, Wyllie AH (1991) Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 32:223–254

    Article  CAS  PubMed  Google Scholar 

  5. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801

    Article  CAS  PubMed  Google Scholar 

  6. Pasquier D, Rincheval V, Sinzelle L, Chesneau A, Ballagny C, Sachs LM, Demeneix B, Mazabraud A (2006) Developmental cell death during Xenopus metamorphosis involves BID cleavage and caspase 2 and 8 activation. Dynamics 235:2083–2094

    Article  Google Scholar 

  7. Domanski D, Helbing CC (2007) Analysis of the Rana catesbeiana tadpole tail fin proteome and phosphoproteome during T3-induced apoptosis: identification of a novel type I keratin. BMC Dev Biol 7:94–122

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ricci JE, Muñoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, Scheffler IE, Ellisman MH, Green DR (2004) Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117:773–786

    Article  CAS  PubMed  Google Scholar 

  9. Vilaplana L, Pascual N, Perera N, Bellés X (2007) Molecular characterization of an inhibitor of apoptosis in the Egyptian armyworm, Spodoptera littoralis, and midgut cell death during metamorphosis. Insect Biochem Mol Biol 37:1241–1248

    Article  CAS  PubMed  Google Scholar 

  10. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  11. Chambon JP, Soule J, Pomies P, Fort P, Sahuquet A, Alexandre D, Mangeat PH, Baghdiguian S (2002) Tail regression in Ciona intestinalis (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Development 129:3105–3114

    CAS  PubMed  Google Scholar 

  12. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  13. Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10:649–655

    Article  CAS  PubMed  Google Scholar 

  14. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases. An update. Comp Biochem Phys 151:10–27

    Article  Google Scholar 

  15. Hale AJ, Smith CA, Sutherland LC, Stoneman VE, Longthorne VL, Culhane AC, Williams GT (1996) Apoptosis: molecular regulation of cell death. Eur J Biochem 236:1–26

    Article  CAS  PubMed  Google Scholar 

  16. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  PubMed  Google Scholar 

  17. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  CAS  PubMed  Google Scholar 

  18. Kurobe T, Hirono I, Kondo H, Yamashita M, Aoki T (2007) Molecular cloning, expression, and functional analysis of caspase-10 from Japanese flounder Paralichthys olivaceus. Fish Shellfish Immunol 23:1266–1274

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Castejon G, Sepulcre MP, Mulero I, Pelegrin P, Meseguer J, Mulero V (2008) Molecular and functional characterization of gilthead seabream Sparus aurata caspase-1: the first identification of an inflammatory caspase in fish. Mol Immunol 45:49–57

    Article  CAS  PubMed  Google Scholar 

  20. Yang BY, Qin J, Shi B, Han GD, Chen J, Huang HQ, Ke CH (2012) Molecular characterization and functional analysis of adrenergic like receptor during larval metamorphosis in Crassostrea angulata. Aquaculture 366–367:54–61

    Article  Google Scholar 

  21. Yang BY, Ni JB, Zeng Z, Shi B, You WW, Ke CH (2013) Cloning and characterization of the dopamine like receptor in the oyster Crassostrea angulata and its expression during the ovarian cycle. Comp Biochem Physiol B 164:168–175

    Article  CAS  PubMed  Google Scholar 

  22. Hinman VF, Degnan BM (2000) Retinoic acid perturbs Otx gene expression in the ascidian pharynx. Dev Genes Evol 210:129–139

    Article  CAS  PubMed  Google Scholar 

  23. Qu T, Huang BY, Zhang LL, Li L, Xu F, Huang W, Li CY, Du YH, Zhang GF (2014) Identification and functional characterization of two executioner caspases in Crassostrea gigas. PLoS ONE 9(2):e89040

    Article  PubMed Central  PubMed  Google Scholar 

  24. Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    Article  CAS  PubMed  Google Scholar 

  25. Huang WB, Ren HL, Gopalakrishnan S, Xu DD, Qiao K, Wang KJ (2010) First molecular cloning of a molluscan caspase from variously colored abalone (Haliotis diversicolor) and gene expression analysis with bacterial challenge. Fish Shellfish Immunol 28:587–595

    Article  CAS  PubMed  Google Scholar 

  26. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361

    Article  CAS  PubMed  Google Scholar 

  27. Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300:321–334

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 8:1613–1626

    Article  CAS  PubMed  Google Scholar 

  29. Zhang LL, Li L, Zhang GF (2011) Gene discovery, comparative analysis and expression profile reveal the complexity of the Crassostrea gigas apoptosis system. Dev Comp Immunol 35:603–610

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Miura M, Bergeron L, Zhu H, Yuan J (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78:739–750

    Article  CAS  PubMed  Google Scholar 

  31. Alejandro R, Noelia EC, Sonia D, Antonio F, Beatriz N (2011) New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis. PLoS ONE 6(2):e17003

    Article  Google Scholar 

  32. Sokolova IM (2009) Apoptosis in molluscan immune defense. Inv Surviv J 6:49–58

    Google Scholar 

  33. Ng WP, Porter AG, Janicke RU (1999) Molecular cloning and characterization of two novel pro-apoptotic isoforms of Caspase-10. J Biol Chem 274(15):10301–10308

    Article  CAS  PubMed  Google Scholar 

  34. Muzio M (1998) Signalling by proteolysis: death receptors induce apoptosis. Int J Clin Lab Res 28:141–147

    Article  CAS  PubMed  Google Scholar 

  35. Bridgham JT, Wilder JA, Hollocher H, Johnson AL (2003) All in the family: evolutionary and functional relationship among death receptors. Cell Death Differ 10:19–25

    Article  CAS  PubMed  Google Scholar 

  36. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  37. Wilson KB, Black JA, Thomson JA, Kim EE, Griffith JP (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370:270–275

    Article  CAS  PubMed  Google Scholar 

  38. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  CAS  PubMed  Google Scholar 

  39. Reis MIR, Nascimento DS, do Vale A, Silva MT, dos Santos NMS (2007) Molecular cloning and characterization of sea bass (Dicentrarchus labrax L.) caspase-3 gene. Mol Immunol 44:774–783

    Article  CAS  PubMed  Google Scholar 

  40. Mu YN, Xiao XQ, Zhang JZ, Ao JQ, Chen XH (2010) Molecular cloning and functional characterization of caspase 9 in large yellow croaker (Pseudosciaena crocea). Dev Comp Immunol 34:300–307

    Article  CAS  PubMed  Google Scholar 

  41. Weinrauch Y, Zychlinsky A (1999) The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 53:155–187

    Article  CAS  PubMed  Google Scholar 

  42. Chang CC, Yeh MS, Lin HK, Cheng W (2008) The effect of Vibrio alginolyticus infection on caspase-3 expression and activity in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 25:672–678

    Article  CAS  PubMed  Google Scholar 

  43. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    Article  CAS  PubMed  Google Scholar 

  44. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    Article  CAS  PubMed  Google Scholar 

  45. Vakifahmetoglu H, Olsson M, Orrenius S, Zhivotovsky B (2006) Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene 25:5683–5692

    Article  CAS  PubMed  Google Scholar 

  46. Zou H, Li YC, Liu HS, Wang XD (1999) An APAF-1 center dot cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    Article  CAS  PubMed  Google Scholar 

  47. Jian X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  Google Scholar 

  48. Carol M, Troy SA, Rabacchi JB, Hohl JM, Angelastro LA, Greene ML, Shelanski (2001) Death in the balance: alternative participation of the Caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 21(14):5007–5016

    Google Scholar 

  49. Vigneswara V, Berry M, Logan A, Ahmed Z (2013) Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from apoptosis after serum withdrawal. PLoS ONE 8(2):e57861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Croll RP, Jackson DL, Voronezhskaya EE (1997) Catecholamine containing cells in larval and post-larval bivalve molluscs. Biol Bull 193:116–124

    Article  CAS  Google Scholar 

  51. Croll RP, Dickinson AJG (2005) Form and function of the larval nervous system in molluscs. Invertebr Reprod Dev 46:173–187

    Article  Google Scholar 

  52. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by The National Basic Research Program of China (No. 2010CB126403), NSFC (No. 41176113), Marine nonprofit industry research special funds (No. 201305016) and the Earmarked Fund for Modern Agro-industry Technology Research System (No. nycytx-47). We thank EngEdit for its linguistic assistance during the preparation of this manuscript.

Conflict of interest

All the authors in this manuscript have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihuan Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Li, L., Pu, F. et al. Molecular cloning of two molluscan caspases and gene functional analysis during Crassostrea angulata (Fujian oyster) larval metamorphosis. Mol Biol Rep 42, 963–975 (2015). https://doi.org/10.1007/s11033-014-3833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3833-y

Keywords

Navigation