Skip to main content
Log in

Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C4 plant, Pennisetum glaucum (L.) R. Br

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The generation of excess reactive oxygen species (ROS) is one of the most common consequences of abiotic stress on plants. Glutathione reductase (GR, E.C. 1.6.4.2) and allied enzymes of the ascorbate–glutathione cycle play a crucial role to maintain the homeostatic redox balance in the cellular environment. GR plays an essential role in upholding the reduced glutathione pool under stress conditions. In the present study, a full-length GR cDNA and corresponding genomic clone was isolated from Pennisetum glaucum (L.) R. Br. The PgGR cDNA, encodes a 497-amino acid peptide with an estimated molecular mass of ~53.5 kDa. The PgGR peptide exhibits 54–89 % sequence homology with GR from other plants and is cytoplasmic in nature. The PgGR enzyme was purified to near homogeneity, the recombinant protein being relatively thermostable and displaying activity in a broad range of temperature, pH and substrate concentrations. The PgGR transcript level was differentially regulated by heat, cold, salinity and methyl viologen-induced oxidative stress. The heterologously expressed PgGR protein in E. coli showed an improved protection against metal- and methyl viologen-induced oxidative stress. Our overall finding underscores the role of PgGR gene that responds to multiple abiotic stresses and provides stress tolerance in the experimental model (E. coli) which can be potentially used for the improvement of crops under abiotic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Suzuki N, Koussevitzky S, Mittler R, Mittler G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  2. Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    Article  CAS  PubMed  Google Scholar 

  3. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metals induced oxidative damage, defence reactions and de-toxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  5. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 736837

  6. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  7. Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  8. Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Guy CL, Carter JV (1984) Characterization of partially purified glutathione reductase from cold-hardened and non-hardened spinach leaf tissues. Cryobiology 21:454–464

    Article  CAS  Google Scholar 

  10. Anderson J, Hess J, Chevone B (1990) Purification, characterization, and immunological properties for two isoforms of glutathione reductase from eastern white pine needles. Plant Physiol 94:1402–1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Contour-Ansel D, Torres-Franklin ML, Cruz DE, Carvalho MH, D’Arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Stevens R, Creissen G, Mullineaux PM (1997) Cloning and characterization of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Mol Biol 35:641–654

    Article  CAS  PubMed  Google Scholar 

  13. Takeda T, Ishikawa T, Shigeoka S, Hirayama O, Mitsunaga T (1993) Purification and characterization of glutathione reductase from Chlamydomonas reinhardtii. Microbiology 139:2233–2238

    CAS  Google Scholar 

  14. Tang X, Webb MA (1994) Soybean root nodule cDNA encoding glutathione reductase. Plant Physiol 104:1081–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kubo A, Sano T, Saji H, Tanaka K, Kondo N, Tanaka K (1993) Primary structure and properties of glutathione reductase from Arabidopsis thaliana. Plant Cell Physiol 34:1259–1266

    CAS  Google Scholar 

  16. Kaminaka H, Morita S, Nakajima M, Masmura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39:1269–1280

    Article  CAS  PubMed  Google Scholar 

  17. Lee H, Won SH, Lee BH, Park HD, Chung WI, Jo J (2002) Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var. Pekinensis. Mol Cells 13:245–251

    CAS  PubMed  Google Scholar 

  18. Lascano HR, Casano LM, Melchiorre MN, Trippi VS (2001) Biochemical and molecular characterization of wheat chloroplastic glutathione reductase. Biol Plant 44:509–516

    Article  CAS  Google Scholar 

  19. Desingh R, Jutur PP, Reddy AR (2006) Salinity stress-induced changes in photosynthesis and antioxidative systems in three casuarina species. J Plant Biol 33:155–161

    CAS  Google Scholar 

  20. Kukreja S, Nandwal AS, Kumar N, Sharma SK, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicerarietinum roots as affected by salinity. Biol Plant 49:305–308

    Article  CAS  Google Scholar 

  21. Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  23. Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential responses in salt tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  24. Khan F, Siddiqi TO, Mahmooduzzafar AA (2009) Morphological changes and antioxidant defence systems in soybean genotypes as affected by salt stress. J Plant Interact 4:295–306

    Article  CAS  Google Scholar 

  25. Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  26. Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    Article  CAS  Google Scholar 

  27. Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  28. Desingh R, Kanagaraj G (2007) Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen Appl Plant Physiol 33:221–234

    CAS  Google Scholar 

  29. Smirnoff N, Colombe SV (1988) Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot 39:1097–1108

    Article  CAS  Google Scholar 

  30. Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  31. Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain. Plant Cell Physiol 33:957–961

    CAS  Google Scholar 

  32. Sairam RK, Shukla DS, Saxena DC (1997) Stress-induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol Plant 40:357–364

    Article  CAS  Google Scholar 

  33. Selote DS, Chopra RK (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 127:494–506

    Article  CAS  Google Scholar 

  34. Selote DS, Chopra RK (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Physiol Plant 121:462–471

    Article  CAS  Google Scholar 

  35. Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 67:541–550

    Article  Google Scholar 

  36. Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidative injury and protein synthesis in Tortula ruralis. Plant Physiol 95:648–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kim DW, Shibato J, Agrawa GK, Fujihara S, Iwahashi H, Kim DH, Shim IS, Rakwal R (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol Cells 24:45–59

    CAS  PubMed  Google Scholar 

  38. Tsaia YC, Hongb CY, Liua LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299

    Article  Google Scholar 

  39. Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:1221–1227

    Article  CAS  Google Scholar 

  40. Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  41. Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:29–135

    Google Scholar 

  42. Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592

    Article  CAS  PubMed  Google Scholar 

  43. Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  Google Scholar 

  44. Nakashima K, Shinwar ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  CAS  PubMed  Google Scholar 

  45. Bressan RA, Park HC, Orsini F, Oh D, Dassanayake M, Inan G, Yun G, Bohnert HJ, Maggio A (2013) Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotech Rep 7:27–37

    Article  Google Scholar 

  46. Hedimbi M, Ananias NK, Kandawa-schulz M (2012) Effects of storage conditions on viability, germination and sugar content of pearl millet (Pennisetum glaucum) grain. J Res Agric 1:088–092

    Google Scholar 

  47. Lopes MS, Araus JL, van Heerden PDR, Foyer CH (2011) Enhancing drought tolerance in C4 crops. J Exp Bot 62:3135–3153

    Article  CAS  PubMed  Google Scholar 

  48. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  49. Mishra RN, Ramesha A, Kaul T, Nair S, Sopory SK, Reddy MK (2005) A modified cDNA subtraction to identify differentially expressed genes from plants with universal application to other eukaryotes. Anal Biochem 345:149–157

    Article  CAS  PubMed  Google Scholar 

  50. Karan R, Singla-Pareek SL, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9:411–417

    Article  CAS  PubMed  Google Scholar 

  51. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  52. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  54. Sumathi K, Ananthalakshmi P, Roshan MN, Sekar K (2006) 3dSS: 3D structural superposition. Nucleic Acids Res 34:W128–W132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Jiang MY, Zhang JH (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Liu X, Chu Y, Wang Y, Zhang Q, Zhou X (2011) Cloning and characterization of a 2-Cys peroxiredoxin in the pine wood nematode, Bursaphelenchus xylophilus, a putative genetic factor facilitating the infestation. Int J Biol Sci 7:823–836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  58. Jones DC, Ariza A, Chow WH, Oza SL, Fairlamb AH (2010) Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi. Mol Biochem Parasitol 169:12–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 149–158

    Chapter  Google Scholar 

  60. Gadea J, Conejero V, Vera P (1999) Developmental regulation of a cytosolic ascorbate peroxidase gene from tomato plants. Mol Gen Genet 262:212–219

    Article  CAS  PubMed  Google Scholar 

  61. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  CAS  PubMed  Google Scholar 

  62. Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Anjum NA et al (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Dordrecht

    Google Scholar 

  63. Pang CH (2010) Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate glutathione cycle and stress tolerance in plants. In: Umar S, Chan MT (eds) Anjum NA. Springer, Ascorbate glutathione pathway and stress tolerance in plants, pp 91–113

    Google Scholar 

  64. Turner B, Pollock CJ (1993) The effects of temperature and pH on the apparent Michaelis constant of glutathione reductase from maize (Zea mays L.). Plant Cell Environ 16:289–295

    Article  CAS  Google Scholar 

  65. Hakam N, Simon JP (2005) Molecular forms and thermal and kinetic properties of purified glutathione reductase from two populations of barnyard grass (Echinochloa crus-galli (L.) Beauv.: Poaceae) from contrasting climatic regions in North America. Can J Bot 78:969–980

    Google Scholar 

  66. Stevens RG, Creissen GP, Mullineaux PM (2000) Characterization of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211:537–545

    Article  CAS  PubMed  Google Scholar 

  67. Arias DG, Marquez VE, Beccaria AJ, Guerrero SA, Iglesias AA (2010) Purification and characterization of a glutathione reductase from Phaeodactylum tricornutum. Protist 161:91–101

    Article  CAS  PubMed  Google Scholar 

  68. Liu ZJ, Zhang XL, Bai JG, Suo BX, Xu PL, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hortic 121:138–143

    Article  CAS  Google Scholar 

  69. Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244

    Article  Google Scholar 

  70. Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  71. Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1991) Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol 32:691–697

    CAS  Google Scholar 

  72. Park SH, Yi N, Kim YS, Jeong MH, Bang SW, Choi YD, Kim JK (2010) Analysis of five novel putative constitutive gene promoters in transgenic rice plants. J Exp Bot 61:2459–2467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232:743–754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the ICGEB, New Delhi for providing support and facilities to carry out the research. The authors thank Prof. B. B. Panda, Department of Botany, Berhampur University, India, who read and helped for improvement of the manuscript. The award of Research Associateship by Department of Biotechnology (DBT) India, to Dr. V. M. M. Achary is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malireddy K. Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achary, V.M.M., Reddy, C.S., Pandey, P. et al. Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C4 plant, Pennisetum glaucum (L.) R. Br. Mol Biol Rep 42, 947–962 (2015). https://doi.org/10.1007/s11033-014-3832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3832-z

Keywords

Navigation