Skip to main content

Advertisement

Log in

Biological characteristics of rat dorsal root ganglion cell and human vascular endothelial cell in mono- and co-culture

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the biological activity of rat dorsal root ganglion cell (DRGC) and human vascular endothelial cell (HMVEC) in mono- and co-culture. Expression levels of vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) mRNA were measured by quantitative real-time RT-PCR (qRT-PCR). Western blot analysis was used to identify VEGF and NGF protein expressions. Cell injury was assessed by measuring cell viability with methylthiazol tetrazolium (MTT) assay. The results showed that VEGF and NGF mRNA levels in the HMVEC+DRGC group were significantly higher than those in the DRGC and HMVEC groups (all p < 0.05). There were also greater increases in both VEGF and NGF protein expressions in the HMVEC+DRGC group than those in the DRGC and HMVEC groups (all p < 0.05). The results of MTT analysis revealed significant differences in cell viability among the HMVEC+DRGC group and the DRGC and HMVEC groups (all p < 0.05). In summary, our findings provide evidence that DRGC and HMVEC in co-culture may exhibit greater biological activity than DRGC in mono-culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ho C, O’Leary ME (2011) Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 46:159–166. doi:10.1016/j.mcn.2010.08.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Machida A, Kuwahara H, Mayra A, Kubodera T, Hirai T, Sunaga F, Tajiri M, Hirai Y et al (2013) Intraperitoneal administration of AAV9-shRNA inhibits target gene expression in the dorsal root ganglia of neonatal mice. Mol Pain 9:36. doi:10.1186/1744-8069-9-36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hu ZL, Shi M, Huang Y, Zheng MH, Pei Z, Chen JY, Han H, Ding YQ (2011) The role of the transcription factor Rbpj in the development of dorsal root ganglia. Neural Dev 6:14. doi:10.1186/1749-8104-6-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nayagam BA, Muniak MA, Ryugo DK (2011) The spiral ganglion: connecting the peripheral and central auditory systems. Hear Res 278:2–20. doi:10.1016/j.heares.2011.04.003

    Article  PubMed Central  PubMed  Google Scholar 

  5. Daud MF, Pawar KC, Claeyssens F, Ryan AJ, Haycock JW (2012) An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33:5901–5913. doi:10.1016/j.biomaterials.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  6. Babiarz J, Kane-Goldsmith N, Basak S, Liu K, Young W, Grumet M (2011) Juvenile and adult olfactory ensheathing cells bundle and myelinate dorsal root ganglion axons in culture. Exp Neurol 229:72–79. doi:10.1016/j.expneurol.2010.08.028

    Article  PubMed  Google Scholar 

  7. Roggenkamp D, Falkner S, Stab F, Petersen M, Schmelz M, Neufang G (2012) Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Invest Dermatol 132:1892–1900. doi:10.1038/jid.2012.44

    Article  CAS  PubMed  Google Scholar 

  8. Larsson K, Runesson E, Junevik K, Rydevik B, Brisby H (2011) Effects of intervertebral disc cells on neurite outgrowth from dorsal root ganglion explants in culture. Spine 36(8):600–606. doi:10.1097/BRS.0b013e3181d8bca7

    Article  PubMed  Google Scholar 

  9. Kumamoto J, Nakatani M, Tsutsumi M, Goto M, Denda S, Takei K, Denda M (2014) Coculture system of keratinocytes and dorsal-root-ganglion-derived cells for screening neurotrophic factors involved in guidance of neuronal axon growth in the skin. Exp Dermatol 23:58–60. doi:10.1111/exd.12288

    Article  CAS  PubMed  Google Scholar 

  10. Hu J, Zhou J, Li X, Wang F, Lu H (2011) Schwann cells promote neurite outgrowth of dorsal root ganglion neurons through secretion of nerve growth factor. Indian J Exp Biol 49:177–182

    CAS  PubMed  Google Scholar 

  11. Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, Motta A, Migliaresi C et al (2010) The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 31:6959–6967. doi:10.1016/j.biomaterials.2010.05.057

    Article  CAS  PubMed  Google Scholar 

  12. Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJ, Hoying JB, Witte MH et al (2010) Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc 5:1265–1272. doi:10.1038/nprot.2010.76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sansone V, D’Agostino MC, Bonora C, Sizzano F, De Girolamo L, Romeo P (2012) Early angiogenic response to shock waves in a three-dimensional model of human microvascular endothelial cell culture (HMEC-1). J Biol Regul Homeost Agents 26(1):29–37

    CAS  PubMed  Google Scholar 

  14. Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, Decleves X, Scherrmann JM et al (2013) Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm 10:289–296. doi:10.1021/mp3004308

    Article  CAS  PubMed  Google Scholar 

  15. Guo Y, Shi D, Li W, Liang C, Wang H, Ye Z, Hu L, Li Y (2010) Effects of cerebral microvascular endothelial cells and vascular endothelial growth factor on the proliferation and differentiation of NSCs: a comparative study. Br J Neurosurg 24:62–68. doi:10.3109/02688690903506077

    Article  PubMed  Google Scholar 

  16. Laranjeira MS, Fernandes MH, Monteiro FJ (2012) Reciprocal induction of human dermal microvascular endothelial cells and human mesenchymal stem cells: time-dependent profile in a co-culture system. Cell Prolif 45:320–334. doi:10.1111/j.1365-2184.2012.00822.x

    Article  CAS  PubMed  Google Scholar 

  17. Brouillet S, Hoffmann P, Benharouga M, Salomon A, Schaal JP, Feige JJ, Alfaidy N (2010) Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells. Mol Biol Cell 21:2832–2843. doi:10.1091/mbc.E10-01-0059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nowacka MM, Obuchowicz E (2012) Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides 46:1–10. doi:10.1016/j.npep.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  19. Laranjeira MS, Fernandes MH, Monteiro FJ (2013) Response of monocultured and co-cultured human microvascular endothelial cells and mesenchymal stem cells to macroporous granules of nanostructured-hydroxyapatite agglomerates. J Biomed Nanotechnol 9:1594–1606

    Article  CAS  PubMed  Google Scholar 

  20. Ponnambalam S, Alberghina M (2011) Evolution of the VEGF-regulated vascular network from a neural guidance system. Mol Neurobiol 43:192–206. doi:10.1007/s12035-011-8167-3

    Article  CAS  PubMed  Google Scholar 

  21. Xiong YJ, Yin B, Xiao LC, Wang Q, Gan L, Zhang YC, Zhang SM (2013) Proliferation and differentiation of neural stem cells co-cultured with cerebral microvascular endothelial cells after oxygen-glucose deprivation. J Huazhong Univ Sci Technolog Med Sci 33:63–68. doi:10.1007/s11596-013-1072-4

    Article  CAS  PubMed  Google Scholar 

  22. Kosacka J, Figiel M, Engele J, Hilbig H, Majewski M, Spanel-Borowski K (2005) Angiopoietin-1 promotes neurite outgrowth from dorsal root ganglion cells positive for Tie-2 receptor. Cell Tissue Res 320:11–19. doi:10.1007/s00441-004-1068-2

    Article  CAS  PubMed  Google Scholar 

  23. Rauch MF, Michaud M, Xu H, Madri JA, Lavik EB (2008) Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks in vivo. J Biomater Sci Polym Ed 19:1469–1485. doi:10.1163/156856208786140409

    Article  CAS  PubMed  Google Scholar 

  24. Mompeo B, Engele J, Spanel-Borowski K (2003) Endothelial cell influence on dorsal root ganglion cell formation. J Neurocytol 32:123–129

    Article  PubMed  Google Scholar 

  25. Jadhao CS, Bhatwadekar AD, Jiang Y, Boulton ME, Steinle JJ, Grant MB (2012) Nerve growth factor promotes endothelial progenitor cell-mediated angiogenic responses. Invest Ophthalmol Vis Sci 53:2030–2037. doi:10.1167/iovs.11-8430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Muffley LA, Pan SC, Smith AN, Ga M, Hocking AM, Gibran NS (2012) Differentiation state determines neural effects on microvascular endothelial cells. Exp Cell Res 318:2085–2093. doi:10.1016/j.yexcr.2012.06.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Scuteri A, Galimberti A, Maggioni D, Ravasi M, Pasini S, Nicolini G, Bossi M, Miloso M et al (2009) Role of MAPKs in platinum-induced neuronal apoptosis. Neurotoxicology 30:312–319. doi:10.1016/j.neuro.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  28. Pereira Lopes FR, Lisboa BC, Frattini F, Almeida FM, Tomaz MA, Matsumoto PK, Langone F, Lora S et al (2011) Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy. Neuropathol Appl Neurobiol 37:600–612. doi:10.1111/j.1365-2990.2011.01159.x

    Article  CAS  PubMed  Google Scholar 

  29. Pan Z, Fukuoka S, Karagianni N, Guaiquil VH, Rosenblatt MI (2013) Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea. FASEB J 27:2756–2767. doi:10.1096/fj.12-225185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Li Z, Burns AR, Han L, Rumbaut RE, Smith CW (2011) IL-17 and VEGF are necessary for efficient corneal nerve regeneration. Am J Pathol 178:1106–1116. doi:10.1016/j.ajpath.2010.12.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Brockington A, Lewis C, Wharton S, Shaw PJ (2004) Vascular endothelial growth factor and the nervous system. Neuropathol Appl Neurobiol 30:427–446. doi:10.1111/j.1365-2990.2004.00600.x

    Article  CAS  PubMed  Google Scholar 

  32. Fu C, Hong G, Wang F (2007) Favorable effect of local VEGF gene injection on axonal regeneration in the rat sciatic nerve. J Huazhong Univ Sci Technolog Med Sci 27:186–189. doi:10.1007/s11596-007-0221-z

    Article  CAS  PubMed  Google Scholar 

  33. Udo H, Yoshida Y, Kino T, Ohnuki K, Mizunoya W, Mukuda T, Sugiyama H (2008) Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci 28:14522–14536. doi:10.1523/JNEUROSCI.3673-08.2008

    Article  CAS  PubMed  Google Scholar 

  34. Webber C, Zochodne D (2010) The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol 223:51–59. doi:10.1016/j.expneurol.2009.05.037

    Article  CAS  PubMed  Google Scholar 

  35. Saygili E, Pekassa M, Rackauskas G, Hommes D, Noor-Ebad F, Gemein C, Zink MD, Schwinger RH et al (2011) Mechanical stretch of sympathetic neurons induces VEGF expression via a NGF and CNTF signaling pathway. Biochem Biophys Res Commun 410:62–67. doi:10.1016/j.bbrc.2011.05.105

    Article  CAS  PubMed  Google Scholar 

  36. Alsina FC, Ledda F, Paratcha G (2012) New insights into the control of neurotrophic growth factor receptor signaling: implications for nervous system development and repair. J Neurochem 123:652–661. doi:10.1111/jnc.12021

    Article  CAS  PubMed  Google Scholar 

  37. Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D (2008) Nerve growth factor as an angiogenic factor. Microvasc Res 75:135–141. doi:10.1016/j.mvr.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  38. Pereira Lopes FR, Martin PK, Frattini F, Biancalana A, Almeida FM, Tomaz MA, Melo PA, Borojevic R et al (2013) Double gene therapy with granulocyte colony-stimulating factor and vascular endothelial growth factor acts synergistically to improve nerve regeneration and functional outcome after sciatic nerve injury in mice. Neuroscience 230:184–197. doi:10.1016/j.neuroscience.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  39. Dodla MC, Bellamkonda RV (2008) Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29:33–46. doi:10.1016/j.biomaterials.2007.08.045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is suppprted by the Natural Science Foundation of Liaoning Province (201102252), the Social Development Research Plan of Liaoning Province (201225094), and the Program for Liaoning Excellent Talents in University, LNET. We would like to acknowledge the reviewers for their helpful comments on this paper.

Conflict of interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Q., Li, JJ., An, CH. et al. Biological characteristics of rat dorsal root ganglion cell and human vascular endothelial cell in mono- and co-culture. Mol Biol Rep 41, 6949–6956 (2014). https://doi.org/10.1007/s11033-014-3581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3581-z

Keywords

Navigation