Skip to main content

Advertisement

Log in

Evolution of the VEGF-Regulated Vascular Network from a Neural Guidance System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF–VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson’s disease, Alzheimer’s disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200

    Article  PubMed  CAS  Google Scholar 

  2. Eichmann A, Le Noble F, Autiero M, Carmeliet P (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15:108–115

    Article  PubMed  CAS  Google Scholar 

  3. Zacchigna S, Ruiz de Almodovar C, Carmeliet P (2008) Similarities between angiogenesis and neural development: what small animal models can tell us. Curr Top Dev Biol 80:1–55

    Article  PubMed  Google Scholar 

  4. Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P (2009) Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 89:607–648

    Article  PubMed  CAS  Google Scholar 

  5. Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8:880–887

    Article  PubMed  CAS  Google Scholar 

  6. Hua J, Spee C, Kase S, Rennel ES, Magnussen AL, Qiu Y, Varey A, Dhayade S, Churchill AJ, Harper SJ, Bates DO, Hinton DR (2010) Recombinant human VEGF165b inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 51:4282–4288

    Article  PubMed  Google Scholar 

  7. Seipel K, Eberhardt M, Muller P, Pescia E, Yanze N, Schmid V (2004) Homologs of vascular endothelial growth factor and receptor, VEGF and VEGFR, in the jellyfish Podocoryne carnea. Dev Dyn 231:303–312

    Article  PubMed  CAS  Google Scholar 

  8. Tarsitano M, De Falco S, Colonna V, McGhee JD, Persico MG (2006) The C. elegans pvf-1 gene encodes a PDGF/VEGF-like factor able to bind mammalian VEGF receptors and to induce angiogenesis. FASEB J 20:227–233

    Article  PubMed  CAS  Google Scholar 

  9. Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107:17–26

    Article  PubMed  CAS  Google Scholar 

  10. Cho NK, Keyes L, Johnson E, Heller J, Ryner L, Karim F, Krasnow MA (2002) Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108:865–876

    Article  PubMed  CAS  Google Scholar 

  11. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, de Vos AM (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor-binding site. Proc Natl Acad Sci USA 94:7192–7197

    Article  PubMed  CAS  Google Scholar 

  12. Reigstad LJ, Sande HM, Fluge O, Bruland O, Muga A, Varhaug JE, Martinez A, Lillehaug JR (2003) Platelet-derived growth factor (PDGF)-C, a PDGF family member with a vascular endothelial growth factor-like structure. J Biol Chem 278:17114–17120

    Article  PubMed  CAS  Google Scholar 

  13. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  PubMed  CAS  Google Scholar 

  14. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  PubMed  CAS  Google Scholar 

  15. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560

    Article  PubMed  CAS  Google Scholar 

  16. Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P, Mercurio AM (2003) Flt-1-dependent survival characterizes the epithelial–mesenchymal transition of colonic organoids. Curr Biol 13:1721–1727

    Article  PubMed  CAS  Google Scholar 

  17. Nishiguchi KM, Nakamura M, Kaneko H, Kachi S, Terasaki H (2007) The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Invest Ophthalmol Vis Sci 48:4315–4320

    Article  PubMed  Google Scholar 

  18. Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, Ruozi G, Camporesi S, Sinagra G, Pepe M, Recchia FA, Giacca M (2010) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 24:1467–1478

    Article  PubMed  CAS  Google Scholar 

  19. Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G (2007) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109:2679–2687

    PubMed  CAS  Google Scholar 

  20. Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R (2007) Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res 101:286–294

    Article  PubMed  CAS  Google Scholar 

  21. Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D’Amario D, D’Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K, Hintze TH, Kajstura J, Anversa P (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci USA 106:15885–15890

    Article  PubMed  CAS  Google Scholar 

  22. Kranich S, Hattermann K, Specht A, Lucius R, Mentlein R (2009) VEGFR-3/Flt-4 mediates proliferation and chemotaxis in glial precursor cells. Neurochem Int 55:747–753

    Article  PubMed  CAS  Google Scholar 

  23. Fantin A, Maden CH, Ruhrberg C (2009) Neuropilin ligands in vascular and neuronal patterning. Biochem Soc Trans 37:1228–1232

    Article  PubMed  CAS  Google Scholar 

  24. Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 19:263–274

    Article  PubMed  CAS  Google Scholar 

  25. Yu L, Zhou Y, Cheng S, Rao Y (2010) Plexin a-semaphorin-1a reverse signaling regulates photoreceptor axon guidance in Drosophila. J Neurosci 30:12151–12156

    Article  PubMed  CAS  Google Scholar 

  26. Nukazuka A, Fujisawa H, Inada T, Oda Y, Takagi S (2008) Semaphorin controls epidermal morphogenesis by stimulating mRNA translation via eIF2alpha in Caenorhabditis elegans. Genes Dev 22:1025–1036

    Article  PubMed  CAS  Google Scholar 

  27. Bellon A, Luchino J, Haigh K, Rougon G, Haigh J, Chauvet S, Mann F (2010) VEGFR2 (KDR/Flk1) signaling mediates axon growth in response to semaphorin 3E in the developing brain. Neuron 66:205–219

    Article  PubMed  CAS  Google Scholar 

  28. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791

    Article  PubMed  CAS  Google Scholar 

  29. Carmeliet P, De Smet F, Loges S, Mazzone M (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6:315–326

    Article  PubMed  CAS  Google Scholar 

  30. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  PubMed  CAS  Google Scholar 

  31. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  PubMed  CAS  Google Scholar 

  32. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  PubMed  CAS  Google Scholar 

  33. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  34. Olfert IM, Howlett RA, Tang K, Dalton ND, Gu Y, Peterson KL, Wagner PD, Breen EC (2009) Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol 587:1755–1767

    Article  PubMed  CAS  Google Scholar 

  35. Tang K, Rossiter HB, Wagner PD, Breen EC (2004) Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 97:1559–1566

    Article  PubMed  CAS  Google Scholar 

  36. Le YZ, Bai Y, Zhu M, Zheng L (2010) Temporal requirement of RPE-derived VEGF in the development of choroidal vasculature. J Neurochem 112:1584–1592

    Article  PubMed  CAS  Google Scholar 

  37. Bruns AF, Bao L, Walker JH, Ponnambalam S (2009) VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochem Soc Trans 37:1193–1197

    Article  PubMed  CAS  Google Scholar 

  38. Nowak DG, Amin EM, Rennel ES, Hoareau-Aveilla C, Gammons M, Damodoran G, Hagiwara M, Harper SJ, Woolard J, Ladomery MR, Bates DO (2010) Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J Biol Chem 285:5532–5540

    Article  PubMed  CAS  Google Scholar 

  39. Chen TT, Luque A, Lee S, Anderson SM, Segura T, Iruela-Arispe ML (2010) Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol 188:595–609

    Article  PubMed  CAS  Google Scholar 

  40. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA (2009) An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA 106:18751–18756

    Article  PubMed  CAS  Google Scholar 

  41. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037

    PubMed  CAS  Google Scholar 

  42. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271:7788–77895

    Article  PubMed  CAS  Google Scholar 

  43. Lauer G, Sollberg S, Cole M, Flamme I, Sturzebecher J, Mann K, Krieg T, Eming SA (2000) Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 115:12–18

    Article  PubMed  CAS  Google Scholar 

  44. Roth D, Piekarek M, Paulsson M, Christ H, Bloch W, Krieg T, Davidson JM, Eming SA (2006) Plasmin modulates vascular endothelial growth factor-A-mediated angiogenesis during wound repair. Am J Pathol 168:670–684

    Article  PubMed  CAS  Google Scholar 

  45. Lauer G, Sollberg S, Cole M, Krieg T, Eming SA (2002) Generation of a novel proteolysis resistant vascular endothelial growth factor165 variant by a site-directed mutation at the plasmin sensitive cleavage site. FEBS Lett 531:309–313

    Article  PubMed  CAS  Google Scholar 

  46. Mineur P, Colige AC, Deroanne CF, Dubail J, Kesteloot F, Habraken Y, Noel A, Voo S, Waltenberger J, Lapiere CM, Nusgens BV, Lambert CA (2007) Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 179:1261–1273

    Article  PubMed  CAS  Google Scholar 

  47. Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, Ladomery MR, Harper SJ, Bates DO (2008) Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121:3487–3495

    Article  PubMed  CAS  Google Scholar 

  48. Schwarz Q, Gu C, Fujisawa H, Sabelko K, Gertsenstein M, Nagy A, Taniguchi M, Kolodkin AL, Ginty DD, Shima DT, Ruhrberg C (2004) Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes Dev 18:2822–2834

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Z, Helman JI, Li LJ (2010) Lymphangiogenesis, lymphatic endothelial cells and lymphatic metastasis in head and neck cancer—a review of mechanisms. Int J Oral Sci 2:5–14

    Article  PubMed  Google Scholar 

  50. Muller-Deile J, Worthmann K, Saleem M, Tossidou I, Haller H, Schiffer M (2009) The balance of autocrine VEGF-A and VEGF-C determines podocyte survival. Am J Physiol Renal Physiol 297:F1656–F1667

    Article  PubMed  CAS  Google Scholar 

  51. Wang ZG, Puri TS, Quigg RJ (2010) Characterization of novel VEGF (vascular endothelial growth factor)-C splicing isoforms from mouse. Biochem J 428:347–354

    Article  PubMed  CAS  Google Scholar 

  52. Choi JS, Shin YJ, Lee JY, Yun H, Cha JH, Choi JY, Chun MH, Lee MY (2010) Expression of vascular endothelial growth factor receptor-3 mRNA in the rat developing forebrain and retina. J Comp Neurol 518:1064–1081

    Article  PubMed  CAS  Google Scholar 

  53. Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Breant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL (2006) VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 9:340–348

    Article  PubMed  CAS  Google Scholar 

  54. Fulga TA, Rorth P (2002) Invasive cell migration is initiated by guided growth of long cellular extensions. Nat Cell Biol 4:715–719

    Article  PubMed  CAS  Google Scholar 

  55. Heino TI, Karpanen T, Wahlstrom G, Pulkkinen M, Eriksson U, Alitalo K, Roos C (2001) The Drosophila VEGF receptor homolog is expressed in hemocytes. Mech Dev 109:69–77

    Article  PubMed  CAS  Google Scholar 

  56. Bruckner K, Kockel L, Duchek P, Luque CM, Rorth P, Perrimon N (2004) The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell 7:73–84

    Article  PubMed  Google Scholar 

  57. Macias A, Romero NM, Martin F, Suarez L, Rosa AL, Morata G (2004) PVF1/PVR signaling and apoptosis promotes the rotation and dorsal closure of the Drosophila male terminalia. Int J Dev Biol 48:1087–1094

    Article  PubMed  CAS  Google Scholar 

  58. Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA (2008) Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7:318–334

    Article  PubMed  CAS  Google Scholar 

  59. Janssens K, Sung HH, Rorth P (2010) Direct detection of guidance receptor activity during border cell migration. Proc Natl Acad Sci USA 107:7323–7328

    Article  PubMed  CAS  Google Scholar 

  60. Wu X, Liu N (2010) The role of Ang/Tie signaling in lymphangiogenesis. Lymphology 43:59–72

    PubMed  CAS  Google Scholar 

  61. Dormer A, Beck G (2005) Evolutionary analysis of human vascular endothelial growth factor, angiopoietin, and tyrosine endothelial kinase involved in angiogenesis and immunity. In Silico Biol 5:323–339

    PubMed  CAS  Google Scholar 

  62. Banerjee S, Bhat MA (2007) Neuron-glial interactions in blood–brain barrier formation. Annu Rev Neurosci 30:235–258

    Article  PubMed  CAS  Google Scholar 

  63. Abbott NJ, Bundgaard M (1992) Electron-dense tracer evidence for a blood–brain barrier in the cuttlefish Sepia officinalis. J Neurocytol 21:276–294

    Article  PubMed  CAS  Google Scholar 

  64. Munoz-Chapuli R, Carmona R, Guadix JA, Macias D, Perez-Pomares JM (2005) The origin of the endothelial cells: an evo–devo approach for the invertebrate/vertebrate transition of the circulatory system. Evol Dev 7:351–358

    Article  PubMed  CAS  Google Scholar 

  65. Gasparini F, Burighel P, Manni L, Zaniolo G (2008) Vascular regeneration and angiogenic-like sprouting mechanism in a compound ascidian is similar to vertebrates. Evol Dev 10:591–605

    Article  PubMed  Google Scholar 

  66. Tiozzo S, Voskoboynik A, Brown FD, De Tomaso AW (2008) A conserved role of the VEGF pathway in angiogenesis of an ectodermally-derived vasculature. Dev Biol 315:243–255

    Article  PubMed  CAS  Google Scholar 

  67. Wymann MP, Pirola L, Katanaev VL, Bulgarelli-Leva G (1999) Phosphoinositide 3-kinase signalling: no lipids. Biochem Soc Trans 27:629–634

    PubMed  CAS  Google Scholar 

  68. Scanga SE, Ruel L, Binari RC, Snow B, Stambolic V, Bouchard D, Peters M, Calvieri B, Mak TW, Woodgett JR, Manoukian AS (2000) The conserved PI3′K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19:3971–3977

    Article  PubMed  CAS  Google Scholar 

  69. Stocker H, Andjelkovic M, Oldham S, Laffargue M, Wymann MP, Hemmings BA, Hafen E (2002) Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science 295:2088–2091

    Article  PubMed  CAS  Google Scholar 

  70. Dormann D, Weijer CJ (2006) Chemotactic cell movement during Dictyostelium development and gastrulation. Curr Opin Genet Dev 16:367–373

    Article  PubMed  CAS  Google Scholar 

  71. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  PubMed  CAS  Google Scholar 

  72. Oviedo NJ, Pearson BJ, Levin M, Sanchez Alvarado A (2008) Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Dis Model Mech 1:131–143

    Article  PubMed  CAS  Google Scholar 

  73. Zhang D, Aravind L (2010) Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 469:18–30

    Article  PubMed  CAS  Google Scholar 

  74. Smith A, Alrubaie S, Coehlo C, Leevers SJ, Ashworth A (1999) Alternative splicing of the Drosophila PTEN gene. Biochim Biophys Acta 1447:313–317

    PubMed  CAS  Google Scholar 

  75. Kawashima T, Tokuoka M, Awazu S, Satoh N, Satou Y (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. VIII. Genes for PI3K signaling and cell cycle. Dev Genes Evol 213:284–290

    Article  PubMed  CAS  Google Scholar 

  76. Horowitz A, Simons M (2008) Branching morphogenesis. Circ Res 103:784–795

    Article  PubMed  CAS  Google Scholar 

  77. Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P (2008) Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting. Dev Cell 14:547–558

    Article  PubMed  CAS  Google Scholar 

  78. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed  CAS  Google Scholar 

  79. Sims D, Duchek P, Baum B (2009) PDGF/VEGF signaling controls cell size in Drosophila. Genome Biol 10:R20

    Article  PubMed  CAS  Google Scholar 

  80. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    Article  PubMed  CAS  Google Scholar 

  81. Sacharidou A, Koh W, Stratman AN, Mayo AM, Fisher KE, Davis GE (2010) Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 115:5259–5269

    Article  PubMed  CAS  Google Scholar 

  82. Abraham S, Yeo M, Montero-Balaguer M, Paterson H, Dejana E, Marshall CJ, Mavria G (2009) VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 19:668–674

    Article  PubMed  CAS  Google Scholar 

  83. Maurer MH, Tripps WK, Feldmann RE Jr, Kuschinsky W (2003) Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett 344:165–168

    Article  PubMed  CAS  Google Scholar 

  84. Bagnard D, Vaillant C, Khuth ST, Dufay N, Lohrum M, Puschel AW, Belin MF, Bolz J, Thomasset N (2001) Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 21:3332–3341

    PubMed  CAS  Google Scholar 

  85. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerchin M (2005) A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 280:3493–3499

    Article  PubMed  CAS  Google Scholar 

  86. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171:53–67

    Article  PubMed  CAS  Google Scholar 

  87. Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA (2000) Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain. Neuroscience 99:577–585

    Article  PubMed  CAS  Google Scholar 

  88. Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 97:10242–10247

    Article  PubMed  CAS  Google Scholar 

  89. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L (2003) Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120:951–960

    Article  PubMed  CAS  Google Scholar 

  90. Li Q, Ford MC, Lavik EB, Madri JA (2006) Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res 84:1656–1668

    Article  PubMed  CAS  Google Scholar 

  91. Jung KH, Chu K, Lee ST, Kim SJ, Sinn DI, Kim SU, Kim M, Roh JK (2006) Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation. Brain Res 1073–1074:190–201

    Article  PubMed  CAS  Google Scholar 

  92. Zhang H, Vutskits L, Pepper MS, Kiss JZ (2003) VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 163:1375–1384

    Article  PubMed  CAS  Google Scholar 

  93. Wada T, Haigh JJ, Ema M, Hitoshi S, Chaddah R, Rossant J, Nagy A, van der Kooy D (2006) Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci 26:6803–6812

    Article  PubMed  CAS  Google Scholar 

  94. Kim BK, Kim SE, Shim JH, Woo DH, Gil JE, Kim SK, Kim JH (2006) Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells. FEBS Lett 580:5869–5874

    Article  PubMed  CAS  Google Scholar 

  95. Schmidt NO, Koeder D, Messing M, Mueller FJ, Aboody KS, Kim SU, Black PM, Carroll RS, Westphal M, Lamszus K (2009) Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res 1268:24–37

    Article  PubMed  CAS  Google Scholar 

  96. Guo Y, Shi D, Li W, Liang C, Wang H, Ye Z, Hu L, Li Y (2010) Effects of cerebral microvascular endothelial cells and vascular endothelial growth factor on the proliferation and differentiation of NSCs: a comparative study. Br J Neurosurg 24:62–68

    Article  PubMed  Google Scholar 

  97. Mani N, Khaibullina A, Krum JM, Rosenstein JM (2005) Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol 192:394–406

    Article  PubMed  CAS  Google Scholar 

  98. Sun FY, Guo X (2005) Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res 79:180–184

    Article  PubMed  CAS  Google Scholar 

  99. Merrill MJ, Oldfield EH (2005) A reassessment of vascular endothelial growth factor in central nervous system pathology. J Neurosurg 103:853–868

    Article  PubMed  CAS  Google Scholar 

  100. Lambrechts D, Carmeliet P (2006) VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. Biochim Biophys Acta 1762:1109–1121

    PubMed  CAS  Google Scholar 

  101. Devos D, Moreau C, Lassalle P, Perez T, De Seze J, Brunaud-Danel V, Destee A, Tonnel AB, Just N (2004) Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology 62:2127–2129

    PubMed  CAS  Google Scholar 

  102. Brockington A, Heath PR, Holden H, Kasher P, Bender FL, Claes F, Lambrechts D, Sendtner M, Carmeliet P, Shaw PJ (2010) Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGFdelta/delta mouse model of amyotrophic lateral sclerosis. BMC Genomics 11:203

    Article  PubMed  CAS  Google Scholar 

  103. Lunn JS, Sakowski SA, Kim B, Rosenberg AA, Feldman EL (2009) Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration. Dev Neurobiol 69:871–884

    Article  PubMed  CAS  Google Scholar 

  104. Lu L, Zheng L, Viera L, Suswam E, Li Y, Li X, Estevez AG, King PH (2007) Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci 27:7929–7938

    Article  PubMed  CAS  Google Scholar 

  105. Lemmens R, Van Hoecke A, Hersmus N, Geelen V, D’Hollander I, Thijs V, Van Den Bosch L, Carmeliet P, Robberecht W (2007) Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. Hum Mol Genet 16:2359–2365

    Article  PubMed  CAS  Google Scholar 

  106. Wang Y, Mao XO, Xie L, Banwait S, Marti HH, Greenberg DA, Jin K (2007) Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci 27:304–307

    Article  PubMed  CAS  Google Scholar 

  107. Sathasivam S (2008) VEGF and ALS. Neurosci Res 62:71–77

    Article  PubMed  CAS  Google Scholar 

  108. Chen W, Saeed M, Mao H, Siddique N, Dellefave L, Hung WY, Deng HX, Sufit RL, Heller SL, Haines JL, Pericak-Vance M, Siddique T (2006) Lack of association of VEGF promoter polymorphisms with sporadic ALS. Neurology 67:508–510

    Article  PubMed  CAS  Google Scholar 

  109. Yasuhara T, Shingo T, Muraoka K, Kameda M, Agari T, Wen Ji Y, Hayase H, Hamada H, Borlongan CV, Date I (2005) Neurorescue effects of VEGF on a rat model of Parkinson's disease. Brain Res 1053:10–18

    Article  PubMed  CAS  Google Scholar 

  110. Tian YY, Tang CJ, Wang JN, Feng Y, Chen XW, Wang L, Qiao X, Sun SG (2007) Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci Lett 421:239–244

    Article  PubMed  CAS  Google Scholar 

  111. Emerich DF, Mooney DJ, Storrie H, Babu RS, Kordower JH (2010) Injectable hydrogels providing sustained delivery of vascular endothelial growth factor are neuroprotective in a rat model of Huntington’s disease. Neurotox Res 17:66–74

    Article  PubMed  CAS  Google Scholar 

  112. Mateo I, Llorca J, Infante J, Rodriguez-Rodriguez E, Fernandez-Viadero C, Pena N, Berciano J, Combarros O (2007) Low serum VEGF levels are associated with Alzheimer’s disease. Acta Neurol Scand 116:56–58

    Article  PubMed  CAS  Google Scholar 

  113. Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 23:237–243

    Article  PubMed  CAS  Google Scholar 

  114. Patel NS, Mathura VS, Bachmeier C, Beaulieu-Abdelahad D, Laporte V, Weeks O, Mullan M, Paris D (2010) Alzheimer’s beta-amyloid peptide blocks vascular endothelial growth factor mediated signaling via direct interaction with VEGFR-2. J Neurochem 112:66–76

    Article  PubMed  CAS  Google Scholar 

  115. Yang SP, Bae DG, Kang HJ, Gwag BJ, Gho YS, Chae CB (2004) Co-accumulation of vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer’s disease. Neurobiol Aging 25:283–290

    Article  PubMed  CAS  Google Scholar 

  116. Del Bo R, Ghezzi S, Scarpini E, Bresolin N, Comi GP (2009) VEGF genetic variability is associated with increased risk of developing Alzheimer’s disease. J Neurol Sci 283:66–68

    Article  PubMed  CAS  Google Scholar 

  117. Landgren S, Palmer MS, Skoog I, Minthon L, Wallin A, Andreasen N, Zetterberg M, Blennow K, Zetterberg H (2010) No association of VEGF polymorphims with Alzheimer’s disease. Neuromolecular Med 12:224–228

    Article  PubMed  CAS  Google Scholar 

  118. Zhang W, Sun K, Zhen Y, Wang D, Wang Y, Chen J, Xu J, Hu FB, Hui R (2009) VEGF receptor-2 variants are associated with susceptibility to stroke and recurrence. Stroke 40:2720–2726

    Article  PubMed  CAS  Google Scholar 

  119. Issa R, Krupinski J, Bujny T, Kumar S, Kaluza J, Kumar P (1999) Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab Invest 79:417–425

    PubMed  CAS  Google Scholar 

  120. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956

    Article  PubMed  Google Scholar 

  121. Marcon J, Gagliardi B, Balosso S, Maroso M, Noe F, Morin M, Lerner-Natoli M, Vezzani A, Ravizza T (2009) Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis. Neurobiol Dis 34:121–132

    Article  PubMed  CAS  Google Scholar 

  122. Li Y, Zhang F, Nagai N, Tang Z, Zhang S, Scotney P, Lennartsson J, Zhu C, Qu Y, Fang C, Hua J, Matsuo O, Fong GH, Ding H, Cao Y, Becker KG, Nash A, Heldin CH, Li X (2008) VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest 118:913–923

    Article  PubMed  CAS  Google Scholar 

  123. Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM (2006) The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J 20:1185–1187

    Article  PubMed  CAS  Google Scholar 

  124. Islamov RR, Chintalgattu V, Pak ES, Katwa LC, Murashov AK (2004) Induction of VEGF and its Flt-1 receptor after sciatic nerve crush injury. Neuroreport 15:2117–2121

    Article  PubMed  CAS  Google Scholar 

  125. Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG (2009) Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 4:e4987

    Article  PubMed  CAS  Google Scholar 

  126. Su JJ, Osoegawa M, Matsuoka T, Minohara M, Tanaka M, Ishizu T, Mihara F, Taniwaki T, Kira J (2006) Upregulation of vascular growth factors in multiple sclerosis: correlation with MRI findings. J Neurol Sci 243:21–30

    Article  PubMed  CAS  Google Scholar 

  127. Sasaki M, Lankford KL, Brown RJ, Ruddle NH, Kocsis JD (2010) Focal experimental autoimmune encephalomyelitis in the lewis rat induced by immunization with myelin oligodendrocyte glycoprotein and intraspinal injection of vascular endothelial growth factor. Glia 58:1523–1531

    Article  PubMed  Google Scholar 

  128. Yamada H, Yamada E, Hackett SF, Ozaki H, Okamoto N, Campochiaro PA (1999) Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179:149–156

    Article  PubMed  CAS  Google Scholar 

  129. Hashimoto T, Zhang XM, Chen BY, Yang XJ (2006) VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 133:2201–2210

    Article  PubMed  CAS  Google Scholar 

  130. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D’Amore PA (2008) Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One 3:e3554

    Article  PubMed  CAS  Google Scholar 

  131. Rehak M, Hollborn M, Iandiev I, Pannicke T, Karl A, Wurm A, Kohen L, Reichenbach A, Wiedemann P, Bringmann A (2009) Retinal gene expression and Muller cell responses after branch retinal vein occlusion in the rat. Invest Ophthalmol Vis Sci 50:2359–2367

    Article  PubMed  Google Scholar 

  132. Barnett JM, McCollum GW, Penn JS (2010) Role of cytosolic phospholipase A(2) in retinal neovascularization. Invest Ophthalmol Vis Sci 51:1136–1142

    Article  PubMed  Google Scholar 

  133. Yanni SE, McCollum GW, Penn JS (2010) Genetic deletion of COX-2 diminishes VEGF production in mouse retinal Muller cells. Exp Eye Res 91:34–41

    Article  PubMed  CAS  Google Scholar 

  134. Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S (2008) ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet 17:2424–2432

    Article  PubMed  CAS  Google Scholar 

  135. Gore AV, Lampugnani MG, Dye L, Dejana E, Weinstein BM (2008) Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. Dis Model Mech 1:275–281

    Article  PubMed  CAS  Google Scholar 

  136. Lampugnani MG, Orsenigo F, Rudini N, Maddaluno L, Boulday G, Chapon F, Dejana E (2010) CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123:1073–1080

    Article  PubMed  CAS  Google Scholar 

  137. Falk T, Zhang S, Sherman SJ (2009) Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson’s disease. Mol Neurodegener 4:49

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratories was supported by grants from the British Heart Foundation (S.P.), The Wellcome Trust (S.P.), Heart Research UK (S.P.), and Ministry of Scientific Research of Italy, PRIN 2009 (M.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Alberghina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponnambalam, S., Alberghina, M. Evolution of the VEGF-Regulated Vascular Network from a Neural Guidance System. Mol Neurobiol 43, 192–206 (2011). https://doi.org/10.1007/s12035-011-8167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8167-3

Keywords

Navigation