Skip to main content
Log in

Protective effect of calpain inhibitor N-acetyl-l-leucyl-l-leucyl-l-norleucinal on acute alcohol consumption related cardiomyopathy

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Excessive alcohol consumption and alcoholism cause medical problems with high mortality and morbidity rates. In this study we aimed to decrease the alcohol related tissue damage by inhibiting calpain activation which plays an important role in apoptosis and necrosis, in rats with cardiomyopathy induced by acute alcohol consumption. Male Sprague–Dawley rats were separated into four groups (control, vehicle, alcohol and alcohol + inhibitor) with 10 rats in each. Control group received isocaloric maltose while vehicle group received isocaloric maltose with DMSO, and alcohol group received 8 g/kg absolute ethanol by gavage. Inhibitor group received 20 mg/kg calpain inhibitor 1 intraperitonally prior to alcohol administration. Calpain activities, cathepsin L levels and cytochrome c release rates were significantly increased in alcohol group compared to control group (p < 0.05). Serum CK MB and BNP levels of alcohol group were excessively increased compared to control group (respectively p < 0.001 and p < 0.01). Serum BNP levels of alcohol + inhibitor group were significantly (p < 0.05) decreased compared to alcohol group. In addition to these, histological evaluation of light microscope images and the results of DNA fragmentation and immunohistochemical caspase-3 activity results showed significant improvement of these parameters in alcohol + inhibitor group compared to alcohol group. Results of our biochemical and histological evaluation results revealed that the calpain inhibitor N-acetyl-leu-leu-norleucinal may have an ameliorating effect on acute alcohol consumption related cardiac tissue damage due to its effects on cell death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fernandez-Sola J, Estruch R, Grau JM, Pare JC, Rubin E, Urbano-Marquez A (1994) The relation of alcoholic myopathy to cardiomyopathy. Ann Intern Med 120:529–536

    Article  CAS  PubMed  Google Scholar 

  2. Zhang D, Gaussin V, Taffet GE et al (2000) TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 6:556–563

    Article  CAS  PubMed  Google Scholar 

  3. Guo R, Ren J (2010) Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway. PLoS One 18:8757

    Article  Google Scholar 

  4. Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S (2010) Mitochondrial calpain system: an overview. Arch Biochem Biophys 495:1–7

    Article  CAS  PubMed  Google Scholar 

  5. Kuralay F, Çavdar Z (2006) İnflamatuar medyatörlere toplu bir bakış. Genel Tıp Derg 16:143–152

    Google Scholar 

  6. Rajgopal Y, Vemuri MC (2002) Calpain activation and a-spectrin cleavage in rat brain by ethanol. Neurosci Lett 321:187–191

    Article  CAS  PubMed  Google Scholar 

  7. Blomgren K, Zhu C, Wang X et al (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276:10191–10198

    Article  CAS  PubMed  Google Scholar 

  8. Syntichaki P, Tavernarakis N (2003) The biochemistry of neuronal necrosis: rogue biology. Nat Rev Neurosci 4:672–684

    Article  CAS  PubMed  Google Scholar 

  9. Donohue TM, Curry-McCoy TV, Nanji AA et al (2007) Lysosomal leakage and lack of adaptation of hepatoprotective enzyme contribute to enhanced susceptibility to ethanol-induced liver injury in female rats. Alcohol Clin Exp Res 31:1944–1952

    Article  CAS  PubMed  Google Scholar 

  10. Repnik U, Turk B (2010) Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion 10:662–669

    Article  CAS  PubMed  Google Scholar 

  11. Ge J, Zhao G, Chen R et al (2006) Enhanced myocardial cathepsin B expression in patients with dilated cardiomyopathy. Eur J Heart Fail 8:284–289

    Article  CAS  PubMed  Google Scholar 

  12. Tsuchida K, Aihara H, Isogai K, Hanada K, Shibata N (1986) Degradation of myocardial structural proteins in myocardial infarcted dogs is reduced by Ep459, a cysteine proteinase inhibitor. Biol Chem Hoppe Seyler 367:39–45

    Article  CAS  PubMed  Google Scholar 

  13. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  14. Cuzzocrea S, McDonald MC, Mazzon E et al (2000) Calpain inhibitor I reduces the development of acute and chronic inflammation. Am J Pathol 157:2065–2079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yoshikawa Y, Hagihara H, Ohga Y et al (2005) Calpain inhibitor-1 protects the rat heart from ischemia–reperfusion injury: analysis by mechanical work and energetic. Am J Physiol Heart Circ Physiol 288:1690–1698

    Article  Google Scholar 

  16. Chatterjee PK, Brown PA, Cuzzocrea S et al (2001) Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat. Kidney Int 59:2073–2083

    Article  CAS  PubMed  Google Scholar 

  17. Sandmann S, Prenzel F, Shaw L, Schauer R, Unger T (2002) Activity profile of calpains I and II in chronically infarcted rat myocardium–influence of the calpain inhibitor CAL 9961. Br J Pharmacol 135:1951–1958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mani SK, Shiraishi H, Balasubramanian S et al (2008) In vivo administration of calpeptin attenuates calpain activation and cardiomyocyte loss in pressure-overloaded feline myocardium. Am J Physiol Heart Circ Physiol 295:314–326

    Article  Google Scholar 

  19. Chandrasekhar R, Huang HM, Sun GY (1988) Alterations in rat brain polyphosphoinositide metabolism due to acute ethanol administration. J Pharmacol Exp Ther 245:120–123

    CAS  PubMed  Google Scholar 

  20. Kannan M, Wang L, Kang YJ (2004) Myocardial oxidative stress and toxicity induced by acute ethanol exposure in mice. Exp Biol Med 229:553–559

    CAS  Google Scholar 

  21. Sheeba MS, Asha VV (2006) Effect of Cardiospermum halicacabum on ethanol-induced gastric ulcers in rats. J Ethnopharmacol 106:105–110

    Article  CAS  PubMed  Google Scholar 

  22. Jump SS, Childs TE, Zwetsloot KA, Booth FW, Lees SJ (2009) Fibroblast growth factor 2-stimulated proliferation is lower in muscle precursor cells from old rats. Exp Physiol 94:739–748

    Article  CAS  PubMed  Google Scholar 

  23. Li SY, Fang CX, Aberle NS 2nd, Ren BH, Ceylan-Isik AF, Ren J (2005) Inhibition of PI-3 kinase/Akt/mTOR, but not calcineurin signaling, reverses insulin-like growth factor I-induced protection against glucose toxicity in cardiomyocyte contractile function. J Endocrinol 186:491–503

    Article  CAS  PubMed  Google Scholar 

  24. McDonald MC, Mota-Filipe H, Paul A et al (2001) Calpain inhibitor I reduces the activation of nuclear factor-kB and organ injury/dysfunction in hemorrhagic shock. FASEB J 15:171–186

    Article  CAS  PubMed  Google Scholar 

  25. Işlekel H, Işlekel S, Güner G, Ozdamar N (1999) Evaluation of lipid peroxidation, cathepsin L and acid phosphatase activities in experimental brain ischemia–reperfusion. Brain Res 843:18–24

    Article  PubMed  Google Scholar 

  26. Barrett AJ, Kirschke H (1981) Methods Enzymol 80:535–538

  27. Zovein A, Flowers-Ziegler J, Thamotharan S et al (2004) Postnatal hypoxic-ischemic brain injury alters mechanisms mediating neuronal glucose transport. Am J Physiol Regul Integr Comp Physiol 286:273–282

    Article  Google Scholar 

  28. Soeda J, Miyagawa S, Sano K, Masumoto J, Taniguchi S, Kawasaki S (2001) Cytochrome c release into cytosol with subsequent caspase activation during warm ischemia in rat live. Am J Physiol Gastrointest Liver Physiol 281:1115–1123

    Google Scholar 

  29. Grunnet LG, Aikin R, Tonnesen MF et al (2009) Proinflammatory cytokines activate the intrinsic apoptotic pathway in β-cells. Diabetes 58:1807–1815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Burns MJ, Dickson EW, Sivilotti ML, Cuenoud H (2001) Phentolamine reduces myocardial injury and mortality in a rat model of phenylpropanolamine poisoning. J Toxicol Clin Toxicol 39:129–134

    Article  CAS  PubMed  Google Scholar 

  32. Fenwick MA, Hurst PR (2002) Immunohistochemical localization of active caspase-3 in the mouse ovary: growth and atresia of small follicles. Reproduction 124:659–665

    Article  CAS  PubMed  Google Scholar 

  33. Piano MR (2002) Alcoholic cardiomyopathy: incidence, clinical characteristics, and pathophysiology. Chest 121:1638–1650

    Article  PubMed  Google Scholar 

  34. Krenz M, Cohen MV, Downey JM (2002) The protective and anti-protective effects of ethanol in a myocardial infarct model. Ann NY Acad Sci 957:103–114

    Article  CAS  PubMed  Google Scholar 

  35. Capasso JM, Li P, Guideri G (1992) Myocardial mechanical, biochemical and structural alterations induced by chronic ethanol ingestion in rats. Circ Res 71:346–356

    Article  CAS  PubMed  Google Scholar 

  36. Chen DB, Wang L, Wang PH (2000) Insulin-like growth factor I retards apoptotic signaling induced by ethanol in cardiomyocytes. Life Sci 67:1683–1693

    Article  CAS  PubMed  Google Scholar 

  37. Berridge MJ, Bootman MD, Lipp P (1998) Calcium, a life and death signal. Nature 395:645–648

    Article  CAS  PubMed  Google Scholar 

  38. Clapham DE (1995) Calcium signalling. Cell 80:259–268

    Article  CAS  PubMed  Google Scholar 

  39. Arthur GD, Belcastro AN (1997) A calcium stimulated cysteine protease is involved in isoproterenol induced cardiac hypertrophy. Mol Cell Biochem 176:241–248

    Article  CAS  PubMed  Google Scholar 

  40. Delbridge LM, Connell PJ, Harris PJ, Morgan TO (2000) Ethanol effects on cardiomyocyte contractility. Clin Sci 98:401–407

    Article  CAS  PubMed  Google Scholar 

  41. Kawada T, Masui F, Kumagai H, Koshimizu M, Nakazawa M, Toyo-Oka T (2005) A novel paradigm for therapeutic basis of advanced heart failure–assessment by gene therapy. Pharmacol Ther 107:31–43

    Article  CAS  PubMed  Google Scholar 

  42. Khalil PN, Neuhof C, Huss R et al (2005) Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol 528:124–131

    Article  CAS  PubMed  Google Scholar 

  43. Okada K, Minamino T, Tsukamoto Y et al (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110:705–712

    Article  PubMed  Google Scholar 

  44. Saitoh T, Nakajima T, Takahashi T, Kawahara K (2006) Changes in cardiovascular function on treatment of inhibitors of apoptotic signal transduction pathways in left ventricular remodeling after myocardial infarction. Cardiovasc Pathol 15:130–138

    Article  CAS  PubMed  Google Scholar 

  45. Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS (2004) Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem 263:241–256

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi M, Tanonaka K, Yoshida H et al (2006) Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J Cardiovasc Pharmacol 47:413–421

    CAS  PubMed  Google Scholar 

  47. Sun AY, Ingelman-Sundberg M, Neve E et al (2001) Ethanol and oxidative stress. Alcohol Clin Exp Res 25:237–243

    Article  Google Scholar 

  48. Zhao M, Antunes F, Eaton JW, Brunk UT (2003) Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem 270:3778–3786

    Article  CAS  PubMed  Google Scholar 

  49. Reilly ME, Mantle D, Salisbury J, Peters TJ, Preedy VR (2000) Comparative effects of acute ethanol dosage on liver and muscle protein metabolism. Biochem Pharmacol 60:1773–1785

    Article  CAS  PubMed  Google Scholar 

  50. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease a novel therapeutic target. FASEB J 16:135–146

    Article  CAS  PubMed  Google Scholar 

  51. Burgess DH, Svensson M, Dandrea T et al (1999) Human skeletal muscle cytosols are refractory to cytochrome c-dependent activation of type-II caspases and lack APAF-1. Cell Death Differ 6:256–261

    Article  CAS  PubMed  Google Scholar 

  52. Kelkar S, Dong Q, Xiao Y, Joshi-Barve S, McClain CJ, Barve SS (2002) Ethanol enhances activation-induced caspase-3 dependent cell death in T lymphocytes. Alcohol Clin Exp Res 26:363–370

    Article  CAS  PubMed  Google Scholar 

  53. Olney JW, Tenkova T, Dikranian K, Muglia LJ, Jermakowicz WJ, D’Sa C (2002) Ethanol-induced caspase-3 activation in the in vivo developing mouse brain. Neurobiol Dis 9:205–219

    Article  CAS  PubMed  Google Scholar 

  54. Young C, Roth KA, Klocke BJ et al (2005) Role of caspase-3 in ethanol-induced developmental neurodegeneration. Neurobiol Dis 20:608–614

    Article  CAS  PubMed  Google Scholar 

  55. Ray SK, Matzella DD, Wilford EL (2001) Inhibition of calpain mediated apoptosis by E-64-d reduced immediate early gene expression and reaktive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res 916:115–126

    Article  CAS  PubMed  Google Scholar 

  56. Swapan KR, Edward LH, Naren LB (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Rev 42:169–185

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by Research Projects, Commission of Osmangazi University (Project No. 201011003).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazim Kartkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartkaya, K., Kanbak, G., Oğlakçı, A. et al. Protective effect of calpain inhibitor N-acetyl-l-leucyl-l-leucyl-l-norleucinal on acute alcohol consumption related cardiomyopathy. Mol Biol Rep 41, 6743–6753 (2014). https://doi.org/10.1007/s11033-014-3560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3560-4

Keywords

Navigation