Skip to main content
Log in

PLK4 overexpression and its effect on centrosome regulation and chromosome stability in human gastric cancer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polo-like kinase 4 (PLK4) is a centrosomal protein that is involved in the regulation of centrosome duplication. This study aimed to determine whether the genetic abnormality of PLK4 is involved in human gastric cancer. First, we examined the status of PLK4 mRNA expression in 7 gastric cancer cell lines and 48 primary gastric cancers using an RT-PCR analysis. The upregulation of PLK4 mRNA expression was detected in 57.1 % (4/7) of the gastric cancer cell lines, and a novel PLK4 variant with exon 4, but without exon 5, was identified. In the primary gastric cancers, the upregulation of PLK4 mRNA expression in the cancerous cells was detected in 50.0 % (24/48) of the cases, and this upregulation was statistically significant (P value = 0.0139). Next, we established AGS gastric cancer cells capable of inducibly expressing PLK4 using the piggyBac transposon vector system and showed that PLK4 overexpression induced centrosome amplification and chromosome instability using immunofluorescence and FISH analyses, respectively. Furthermore, PLK4 overexpression suppressed primary cilia formation. Our current findings suggested that PLK4 is upregulated in a subset of primary gastric cancers and that PLK4 overexpression induces centrosome amplification and chromosome instability and causes the suppression of primary cilia formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J (2012) Molecular pathways in colorectal cancer. J Gastroenterol Hepatol 27:1423–1431. doi:10.1111/j.1440-1746.2012.07200.x

    Article  CAS  PubMed  Google Scholar 

  2. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282. doi:10.1038/nature08136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Fukasawa K (2011) Aberrant activation of cell cycle regulators, centrosome amplification, and mitotic defects. Horm Cancer 2:104–112. doi:10.1007/s12672-010-0060-4

    Article  PubMed  Google Scholar 

  4. Krämer A, Maier B, Bartek J (2011) Centrosome clustering and chromosomal (in)stability: a matter of life and death. Mol Oncol 5:324–335. doi:10.1016/j.molonc.2011.05.003

    Article  PubMed  Google Scholar 

  5. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295. doi:10.1016/j.cub.2010.01.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160. doi:10.1038/ncb2345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fukasawa K (2007) Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7:911–924. doi:10.1038/nrc2249

    Article  CAS  PubMed  Google Scholar 

  8. Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139:663–678. doi:10.1016/j.cell.2009.10.036

    Article  CAS  PubMed  Google Scholar 

  9. Shinmura K, Sugimura H (2012) Centrosome abnormality and human lung cancer. In: Irusen EM (ed) Lung diseases: selected state of the art reviews. InTech, Rijeka, pp 171–188

    Google Scholar 

  10. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146. doi:10.1038/ncb1320

    Article  CAS  PubMed  Google Scholar 

  11. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202. doi:10.1016/j.devcel.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  12. Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W, Laue E, Callaini G, Glover DM, Bettencourt-Dias M (2009) The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 19:43–49. doi:10.1016/j.cub.2008.11.037

    Article  CAS  PubMed  Google Scholar 

  13. Korzeniewski N, Zheng L, Cuevas R, Parry J, Chatterjee P, Anderton B, Duensing A, Münger K, Duensing S (2009) Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels. Cancer Res 69:6668–6675. doi:10.1158/0008-5472.CAN-09-1284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188:191–198. doi:10.1083/jcb.200911102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Guderian G, Westendorf J, Uldschmid A, Nigg EA (2010) Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J Cell Sci 123:2163–2169. doi:10.1242/jcs.068502

  16. Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, Rodrigues-Martins A, Bettencourt-Dias M, Callaini G, Glover DM (2010) Asterless is a scaffold for the onset of centriole assembly. Nature 467:714–718. doi:10.1038/nature09445

  17. Macmillan JC, Hudson JW, Bull S, Dennis JW, Swallow CJ (2001) Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann Surg Oncol 8:729–740. doi:10.1007/s10434-001-0729-6

  18. Liu L, Zhang CZ, Cai M, Fu J, Chen GG, Yun J (2012) Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis. PLoS ONE 7:e41293. doi:10.1371/journal.pone.0041293

  19. Masuda A, Takahashi T (2002) Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 21:6884–6897.

    Article  CAS  PubMed  Google Scholar 

  20. Oki E, Hisamatsu Y, Ando K, Saeki H, Kakeji Y, Maehara Y (2012) Clinical aspect and molecular mechanism of DNA aneuploidy in gastric cancers. J Gastroenterol 47:351–358. doi:10.1007/s00535-012-0565-4

    Article  PubMed  Google Scholar 

  21. Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137:32–45. doi:10.1016/j.cell.2009.03.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893. doi:10.1038/nrm2278

    Article  CAS  PubMed  Google Scholar 

  23. Shinmura K, Igarashi H, Goto M, Tao H, Yamada H, Matsuura S, Tajima M, Matsuda T, Yamane A, Funai K, Tanahashi M, Niwa H, Ogawa H, Sugimura H (2011) Aberrant expression and mutation-inducing activity of AID in human lung cancer. Ann Surg Oncol 18:2084–2092. doi:10.1245/s10434-011-1568-8

    Article  PubMed  Google Scholar 

  24. Tsuboi M, Mori H, Bunai T, Kageyama S, Suzuki M, Okudela K, Takamochi K, Ogawa H, Niwa H, Shinmura K, Sugimura H (2010) Secreted form of EphA7 in lung cancer. Int J Oncol 36:635–640. doi:10.3892/ijo_00000539

    CAS  PubMed  Google Scholar 

  25. Shinmura K, Goto M, Suzuki M, Tao H, Yamada H, Igarashi H, Matsuura S, Maeda M, Konno H, Matsuda T, Sugimura H (2011) Reduced expression of MUTYH with suppressive activity against mutations caused by 8-hydroxyguanine is a novel predictor of a poor prognosis in human gastric cancer. J Pathol 225:414–423. doi:10.1002/path.2953

    Article  CAS  PubMed  Google Scholar 

  26. Li R, Pang XQ, Chen WC, Li L, Tian WY, Zhang XG (2012) Gastric cancer cell lines AGS before and after CD40 signal activating. Mol Biol Rep 39:6615–6623. doi:10.1007/s11033-012-1464-8

    Article  CAS  PubMed  Google Scholar 

  27. Shinmura K, Tao H, Nagura K, Goto M, Matsuura S, Mochizuki T, Suzuki K, Tanahashi M, Niwa H, Ogawa H, Sugimura H (2011) Suppression of hydroxyurea-induced centrosome amplification by NORE1A and down-regulation of NORE1A mRNA expression in non-small cell lung carcinoma. Lung Cancer 71:19–27. doi:10.1016/j.lungcan.2010.04.006

    Article  PubMed  Google Scholar 

  28. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483. doi:10.1016/j.cell.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  29. Joshi HC (1994) Microtubule organizing centers and gamma-tubulin. Curr Opin Cell Biol 6:54–62. doi:10.1016/0955-0674(94)90116-3

    Article  CAS  PubMed  Google Scholar 

  30. Oakley BR (2000) Gamma-tubulin. Curr Top Dev Biol 49:27–54. doi:10.1016/S0070-2153(99)49003-9

    Article  CAS  PubMed  Google Scholar 

  31. Spektor A, Tsang WY, Khoo D, Dynlacht BD (2007) Cep97 and CP110 suppress a cilia assembly program. Cell 130:678–690. doi:10.1016/j.devcel.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  32. Schultz MA, Hagan SS, Datta A, Zhang Y, Freeman ML, Sikka SC, Abdel-Mageed AB, Mondal D (2014) Nrf1 and nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells. PLoS ONE 9:e87204. doi:10.1371/journal.pone.0087204

    Article  PubMed Central  PubMed  Google Scholar 

  33. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524. doi:10.1101/gad.1399806

    Article  CAS  PubMed  Google Scholar 

  34. Dongsong N, Zhou JY (2010) FISH is more sensitive than Southern analysis at identifying increased levels of cyclin D1 gene amplified in breast cancer cell lines. Mol Biol Rep 37:3473–3480. doi:10.1007/s11033-009-9939-y

    Article  PubMed  Google Scholar 

  35. Li J, Tan M, Li L, Pamarthy D, Lawrence TS, Sun Y (2005) SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing. Neoplasia 7:312–323. doi:10.1593/neo.04325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tategu M, Nakagawa H, Sasaki K, Yamauchi R, Sekimachi S, Suita Y, Watanabe N, Yoshid K (2008) Transcriptional regulation of human polo-like kinases and early mitotic inhibitor. J Genet Genomics 35:215–224. doi:10.1016/S1673-8527(08)60030-2

    Article  CAS  PubMed  Google Scholar 

  37. Shinmura K, Iwaizumi M, Igarashi H, Nagura K, Yamada H, Suzuki M, Fukasawa K, Sugimura H (2008) Induction of centrosome amplification and chromosome instability in p53-deficient lung cancer cells exposed to benzo[a]pyrene diol epoxide (B[a]PDE). J Pathol 216:365–374. doi:10.1002/path.2422

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464:1048–1051. doi:10.1038/nature08895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Seeley ES, Carrière C, Goetze T, Longnecker DS, Korc M (2009) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 69:422–430. doi:10.1158/0008-5472.CAN-08-1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Merchant JL, Saqui-Salces M, El-Zaatari M (2010) Hedgehog signaling in gastric physiology and cancer. Prog Mol Biol Transl Sci 96:133–156. doi:10.1016/B978-0-12-381280-3.00006-3

    Article  CAS  PubMed  Google Scholar 

  41. Saqui-Salces M, Dowdle WE, Reiter JF, Merchant JL (2012) A high-fat diet regulates gastrin and acid secretion through primary cilia. FASEB J 26:3127–3139. doi:10.1096/fj.11-197426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9:160–170. doi:10.1038/ncb1529

    Article  CAS  PubMed  Google Scholar 

  43. Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T, Tsiokas L (2011) Nde1-mediated inhi-bition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 13:351–360. doi:10.1038/ncb2183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, Izawa I, Inagaki M (2012) Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol 197:391–405. doi:10.1083/jcb.201106101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. T. Niki (Jichi Medical University, Japan) and Dr. Y. Dobashi (Omiya Medical Center, Japan) for providing us with a part of lung cancer cell lines. We also grateful to Dr. E.A. Nigg (Max-Planck-Institute for Biochemistry, Germany; University of Basel, Switzerland) for providing us with GFP-PLK4 expression vector. We acknowledge Ms. K. Nagura and Mr. M. Koda (Hamamatsu University School of Medicine) for their technical assistance. This work was supported by grants from the MHLW (21-1), the JSPS (22590356, 25460476), the MEXT (221S0001), and the Smoking Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Shinmura.

Additional information

The sequence data for a novel variant of PLK4 have been submitted to the DNA Data Bank of Japan (DDBJ) database (http://www.ddbj.nig.ac.jp/index-e.html) under accession number AB741646.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinmura, K., Kurabe, N., Goto, M. et al. PLK4 overexpression and its effect on centrosome regulation and chromosome stability in human gastric cancer. Mol Biol Rep 41, 6635–6644 (2014). https://doi.org/10.1007/s11033-014-3546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3546-2

Keywords

Navigation