Skip to main content
Log in

Comparative analysis of gene expression among species of different ploidy

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Interspecific comparative studies require that expression data be comparable among species, and when species with different levels of ploidy are contemplated the relative expression per cell should be obtained for accurate comparisons to be made. Quantitative reverse-transcription-PCR is the most popular and sensitive technique for the detection and quantification of mRNA in gene expression analysis. In recent years it has become clear that the choice of reference genes for the normalization of expression data is very important. Several studies have shown that the expression of the traditional housekeeping genes varies under certain situations; their use as reference genes in quantitative PCR assays can therefore lead to errors when interpreting the relative expression of target genes. Normalizing with respect to endogenous genes showing a constant level of expression per cell across species, however, provides an easy way of obtaining comparable expression data for other genes in those species. In this work, the validity of several candidate genes was examined across four diploid and polyploid species of the genera Triticum and Aegilops. Candidate reference genes were chosen among the traditional housekeeping genes used in quantitative PCR analysis, as well as others found to have stable levels of expression under different conditions in other studies. After the analyses, candidate genes were gathered into two groups according to the different levels of expression per cell seen in polyploid species. For the four species studied, two genes suitable for normalization procedures in interspecific studies were identified: cell division control protein and malate dehydrogenase. Both showed a constant number of transcripts per cell, independent of the level of ploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheng ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28(3):240–252

    Article  Google Scholar 

  2. Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36(9):511–518

    Article  CAS  PubMed  Google Scholar 

  3. Adams KL (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered 98(2):136–141

    Article  CAS  PubMed  Google Scholar 

  4. Pignatta D, Comai L (2009) Parental squabbles and genome expression: lessons from the polyploids. J Biol 8(4):43

    Article  PubMed Central  PubMed  Google Scholar 

  5. Jackson S, Chen ZF (2010) Genomic and expression plasticity of polyploidy. Curr Opin Biol 13(2):153–159

    Article  CAS  Google Scholar 

  6. Kong F, Mao S, Jiang J, Wang J, Fang X, Wang Y (2011) Proteomic changes in newly synthesized Brassica napus allotetraploids and their early generations. Plant Mol Biol Rep 29:927–935

    Article  CAS  Google Scholar 

  7. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalization: strategies and considerations. Genes Immun 6(4):279–284

    Article  CAS  PubMed  Google Scholar 

  8. Vandesompele J, Kubista M, Pfaffl MW (2009) Reference gene validation software for improved normalization. In: Logan J, Edwards K, Saunders N (eds) Real-time PCR: current technology applications, vol 4. Health Protection Agency, London

    Google Scholar 

  9. Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  10. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed Central  PubMed  Google Scholar 

  11. Long XY, Wang JR, Ouellet T, Rocheleau H, Wei YM, Pu ZE, Jiang QT, Lan XJ, Zheng YL (2010) Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74(3):307–311

    Article  CAS  PubMed  Google Scholar 

  12. Guénin S, Mauriat M, Pelloux J, Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCT data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493

    Article  PubMed  Google Scholar 

  13. Hansen MC, Nielsen AK, Molin S, Hammer K, Kilstrup M (2001) Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J Bacteriol 183(16):4747–4751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Shimada H, Obayashi T, Takahashi N, Matsui M, Sakamoto A (2010) Normalization using ploidy and genomic DNA copy number allows absolute quantification of transcripts, proteins and metabolites in cells. Plant Methods 6:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (7): RESEARCH0034

  16. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  PubMed  Google Scholar 

  17. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  18. Czechowski T, Stitt M, Altman T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V (2007) A combined strategy of “in silico” transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol 63(5):679–688

    Article  CAS  PubMed  Google Scholar 

  20. Jarosova J, Kundu JK (2010) Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time PCR. BMC Plant Biol 10(1):146

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345(2):646–651

    Article  CAS  PubMed  Google Scholar 

  22. Chen K, Fessehaie A, Arora R (2012) Selection of reference genes for normalizing gene expression during seed priming and germination using qPCR in Zea mays and Spinacia oleracea. Plant Mol Biol Rep 30:478–487

    Article  CAS  Google Scholar 

  23. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed Central  PubMed  Google Scholar 

  24. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploidy wheat species (Triticum and Aegilops). Plant Cell 17(4):1033–1045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39(1):70–82

    Article  CAS  PubMed  Google Scholar 

  26. De Bustos A, Pérez R, Jouve N (2007) Characterization of the gene Mre11 and evidence of silencing alter polyploidization in Triticum. Theor Appl Genet 114(6):985–999

    Article  CAS  PubMed  Google Scholar 

  27. Pérez R, Cuadrado A, Chen IP, Puchta H, Jouve N, De Bustos A (2011) The Rad50 genes of diploid and polyploid wheat species. Analysis of homologue and homoeologue expression and interactions with Mre11. Theor Appl Genet 122(2):251–262

    Article  PubMed  Google Scholar 

  28. Pérez R, Cuadrado A, Jouve N, De Bustos A (2011) Characterization of the Nbs1 gene and analysis of the expression of homologous and homoeologous MRN complex genes in meiocytes and somatic cells of different wheat species. Int J Plant Sci 172(8):959–969

    Article  Google Scholar 

  29. Sharp PJ, Desai S, Gale MD (1988) Isoenzyme variation and RFLPs at the β-amylase loci in wheat. Theor Appl Genet 76(5):691–699

    Article  CAS  PubMed  Google Scholar 

  30. Hellemans J, Mortier G, de Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19

    Article  PubMed Central  PubMed  Google Scholar 

  31. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50(4):227–230

    Article  CAS  PubMed  Google Scholar 

  32. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227(6):1343–1349

    Article  CAS  PubMed  Google Scholar 

  33. Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2007) Nuclear DNA amount in diploid Triticeae species. Genome 50(11):1029–1037

    Article  CAS  PubMed  Google Scholar 

  34. Eilam T, Anikster E, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51(8):616–627

    Article  CAS  PubMed  Google Scholar 

  35. Pyke KA, Jellings AJ, Leech RM (1990) Variation in mesophyll cell number and size in wheat leaves. Ann Bot 65(6):679–683

    Google Scholar 

  36. Coate JE, Doyle JJ (2010) Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol Evol 2:534–546

    Article  PubMed Central  PubMed  Google Scholar 

  37. Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142(4):1349–1355

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Kanno J, Aisaki K, Igarashi K, Nakatsu N, Ono A, Kodama Y, Nagao T (2006) “Per cell” normalization method for mRNA measurement by quantitative PCR and microarrays. BMC Genom 7:64

    Article  Google Scholar 

  39. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Giménez MJ, Pistón F, Atienza SG (2011) Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta 233(1):163–173

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the Spanish Ministry of Education and Science (AGL2009-10373 and AGL2012-34052). RP is supported by a grant of the I3 Program of the Spanish Ministry of Education and Science. The authors thank Adrian Burton for linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo De Bustos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 68 kb)

Supplementary material 2 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, R., Jouve, N. & De Bustos, A. Comparative analysis of gene expression among species of different ploidy. Mol Biol Rep 41, 6525–6535 (2014). https://doi.org/10.1007/s11033-014-3536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3536-4

Keywords

Navigation