Skip to main content
Log in

Alternative splicing and immune response of Crassostrea gigas tumor necrosis factor receptor-associated factor 3

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Diverse alternative splicing isoforms play an important role in immune diversity and specificity. Their role in molluscan host-defense is however poorly understood. We characterized two alternative isoforms of tumor necrosis factor receptor-associated factor 3 (TRAF3) in the Pacific oyster, Crassostrea gigas, which were named CgTRAF3-S and CgTRAF3-L. An intron was retained in CgTRAF3-L, introducing a premature termination codon. Comparison and phylogenetic analysis revealed that CgTRAF3 shared a higher identity with other species, suggesting the conservation of the two gene transcripts. Quantitative real-time PCR was performed and the expression levels of CgTRAF3 isoforms were found to be significantly changed after Vibrio anguillarum and ostreid herpesvirus 1 challenges. These two isoforms represented contrary trends, indicating that CgTRAF3-L might function as a negative regulator of CgTRAF3-S. We also investigated the expression level of the transcripts of the two CgTRAF3 isoforms, following the silence of C. gigas mitochondrial anti-viral signaling protein like gene (CgMAVS-like). We concluded that CgTRAF3 might be involved in a MAVS-mediated immune signaling pathway. This study suggests that CgTRAF3 may be a response to bacterial and viral stimulation and that the two isoforms may be involved in immune response pathways. It is also possible that the two alternative splicing isoforms could be inter-coordinated and may promote survival of these oysters under immune stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo X (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1(3–4):251–259

    Article  Google Scholar 

  2. Barbosa-Solomieu V, Dégremont L, Vázquez-Juárez R, Ascencio-Valle F, Boudry P, Renault T (2005) Ostreid Herpesvirus 1 (OsHV-1) detection among three successive generations of Pacific oysters (Crassostrea gigas). Virus Res 107(1):47–56

    Article  CAS  PubMed  Google Scholar 

  3. Hooper C, Day R, Slocombe R, Handlinger J, Benkendorff K (2007) Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models. Fish Shellfish Immunol 22(4):363–379

    Article  CAS  PubMed  Google Scholar 

  4. Olicard C, Renault T, Torhy C, Benmansour A, Bourgougnon N (2005) Putative antiviral activity in hemolymph from adult Pacific oysters, Crassostrea gigas. Antiviral Res 66(2–3):147–152

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Qin JG, Li X, Benkendorff K (2009) Spawning-dependent stress responses in pacific oysters Crassostrea gigas: a simulated bacterial challenge in oysters. Aquaculture 293(3–4):164–171

    Article  Google Scholar 

  6. Samain JF, Dégremont L, Soletchnik P et al (2007) Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268(1–4):227–243

    Article  Google Scholar 

  7. Zhang G, Fang X, Guo X et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54

    Article  CAS  PubMed  Google Scholar 

  8. Rast JP, Messier-Solek C (2008) Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biol Bull 214(3):274–283

    Article  CAS  PubMed  Google Scholar 

  9. Lynch KW (2004) Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol 4(12):931–940

    Article  CAS  PubMed  Google Scholar 

  10. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344:1–20

    Article  CAS  PubMed  Google Scholar 

  11. Ha H, Han D, Choi Y (2009) TRAF-mediated TNFR-family signaling. Curr Protoc Immunol 11(11):1–19

    Google Scholar 

  12. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  13. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  15. Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78(4):681–692

    Article  CAS  PubMed  Google Scholar 

  16. Häcker H, Tseng P, Karin M (2011) Expanding TRAF function: tRAF3 as a tri-faced immune regulator. Nat Rev Immunol 11(7):457–468

    Article  PubMed  Google Scholar 

  17. Cha GH, Cho KS, Lee JH, Kim M, Kim E, Park J, Lee SB, Chung J (2003) Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-kB-dependent signaling pathways. Mol Cell Biol 23(22):7982–7991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wajant H, Mühlenbeck F, Scheurich P (1998) Identification of a TRAF (TNF receptor-associated factor) gene in Caenorhabditis elegans. J Mol Evol 47(6):656–662

    Article  CAS  PubMed  Google Scholar 

  19. Qiu L, Song L, Yu Y, Zhao J, Wang L, Zhang Q (2009) Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong Scallop Chlamys farreri. Fish Shellfish Immunol 26(3):359–367

    Article  CAS  PubMed  Google Scholar 

  20. Fu D, Zhang Y, Xiao S, Yu Z (2011) The first homolog of a TRAF7 (TNF receptor-associated factor 7) gene in a mollusk, Crassostrea hongkongensis. Fish Shellfish Immunol 31(6):1208–1210

    Article  CAS  PubMed  Google Scholar 

  21. Huang XD, Liu WG, Guan YY, Shi Y, Wang Q, Zhao M, Wu SZ, He MX (2012) Molecular cloning, characterization and expression analysis of tumor necrosis factor receptor-associated factor 3 (TRAF3) from pearl oyster Pinctada fucata. Fish Shellfish Immunol 33:652–658

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Li L, Zhang G (2011) A Crassostrea gigas toll-like receptor and comparative analysis of TLR pathway in invertebrates. Fish Shellfish Immunol 30(2):653–660

    Article  CAS  PubMed  Google Scholar 

  23. Renault T, Faury N, Barbosa-Solomieu V, Moreau K (2011) Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Dev Comp Immunol 35(7):725–735

    Article  CAS  PubMed  Google Scholar 

  24. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  25. Pepin JF, Riou A, Renault T (2008) Rapid and sensitive detection of ostreid herpesvirus 1 in oyster samples by real-time PCR. J Virol Methods 149(2):269–276

    Article  CAS  PubMed  Google Scholar 

  26. Schikorski D, Renault T, Saulnier D, Faury N, Moreau P, Pépin J-F (2011) Experimental infection of Pacific oyster Crassostrea gigas spat by ostreid herpesvirus 1: demonstration of oyster spat susceptibility. Vet Res 42(1):1–13

    Article  Google Scholar 

  27. Liu H, Jiravanichpaisal P, Söderhäll I, Cerenius L, Söderhäll K (2006) Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus. J Virol 80(21):10365–10371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Seth RB, Sun L, Ea C-K, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122(5):669–682

    Article  CAS  PubMed  Google Scholar 

  29. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101(6):671–684

    Article  CAS  PubMed  Google Scholar 

  30. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  31. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5(2):89–99

    Article  CAS  PubMed  Google Scholar 

  32. Lewis BP, Green RE, Brenner SE (2002) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100(1):189–192

    Article  PubMed Central  PubMed  Google Scholar 

  33. Chaney ML, Gracey AY (2011) Mass mortality in Pacific oysters is associated with a specific gene expression signature. Mol Ecol 20(14):2942–2954

    Article  PubMed  Google Scholar 

  34. Boise LH, González-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608

    Article  CAS  PubMed  Google Scholar 

  35. Tubiash HS, Colwell RR, Sakazaki R (1970) Marine vibrios associated with bacillary necrosis, a disease of larval and juvenile bivalve mollusks. J Bacteriol 103(1):271

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Renault T, Cochennec N, Le Deuff RM, Chollet B (1994) Herpes-like virus infecting Japanese oyster (Crassostrea gigas) spat. Bull Eur Assoc Fish Pathol 14(2):64–66

    Google Scholar 

  37. Koganezawa A (1974) Present status of studies on the mass mortality of cultured oysters in Japan and its prevention. In: Proceedings of the Third US-Japan Meeting on Aquaculture, pp 29–34

  38. Cheney D, MacDonald B, Elston R R (2000) Summer mortality of Pacific oysters, Crassostrea gigas (Thunberg): initial findings on multiple environmental stressors in Puget Sound, Washington, 1998. J Shellfish Res 19(1):353–360

    Google Scholar 

  39. Davison AJ, Trus BL, Cheng N, Steven AC, Watson MS, Cunningham C, Deuff R-ML, Renault T (2005) A novel class of herpesvirus with bivalve hosts. J Gen Virol 86(1):41–53

    Article  CAS  PubMed  Google Scholar 

  40. Friedman CS, Estes RM, Stokes NA, Burge CA, Hargove JS, Barber BJ, Elston RA, Burreson EM, Reece KS (2005) Herpes virus in juvenile Pacific oysters Crassostrea gigas from Tomales Bay, California, coincides with summer mortality episodes. Dis Aquat Org 63(1):33–41

    Article  PubMed  Google Scholar 

  41. Hine P, Wesney B, Hay B (1992) Herpesviruses associated with mortalities among hatchery-reared larval Pacific oysters Crassostrea gigas. Dis Aquat Org 12(2):135–142

    Article  Google Scholar 

  42. Renault T, Le Deuff RM, Cochennec N, Maffart P (1994) Herpesviruses associated with mortalities among Pacific oyster, Crassostrea gigas, in France-comparative study. Revue Méd Vét 145(10):735–742

    Google Scholar 

  43. Kato H, Takahasi K, Fujita T (2011) RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev 243(1):91–98

    Article  PubMed  Google Scholar 

  44. Saha SK, Pietras EM, He JQ et al (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25(14):3257–3263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Segal E, Wang H, Koller D (2003) Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(Suppl 1):264–272

    Article  Google Scholar 

Download references

Acknowledgments

We thank everyone of laboratory for technical assistance and good suggestions. This research was supported by National Basic Research Program of China (973 Program, No. 2010CB126401), the National Natural Science Foundation of China (No. 40730845), National High Technology Research and Development Program (863 program, No. 2012AA10A405), Shandong Provincial Natural Science Foundation (SDNSF, ZR2010DQ024 & ZR2013DQ010), Mollusc Research and Development Center, CARS, Taishan Scholars Climbing Program of Shandong and Oversea Taishan Scholar Program of Shandong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Guofan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Zhang, L., Du, Y. et al. Alternative splicing and immune response of Crassostrea gigas tumor necrosis factor receptor-associated factor 3. Mol Biol Rep 41, 6481–6491 (2014). https://doi.org/10.1007/s11033-014-3531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3531-9

Keywords

Navigation