Skip to main content
Log in

Role of wheat trHb in nitric oxide scavenging

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We examined the role of wheat truncated-hemoglobin (TatrHb) in nitric oxide (NO) scavenging in transgenic Arabidopsis plants by assessing the response to an NO donor/scavenger and salt stress. The degree of increase in Na+ and decrease in K+ levels in the transgenic plants were more than those in the wild-type plants, and the ratio of Na+ to K+ increased in the transgenic plants under salt stress. Endogenous NO increased dramatically in the salt-treated wild-type plants but not in the transgenic plants. Additionally, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm) in transgenic plants decreased more significantly than that in the wild-type plants, indicating that the transgenic plants suffered more severe photosynthetic damage because of salt stress than that by the wild type. Similar results were observed in germination experiments by using Murashige and Skoog media containing 100 mM sodium chloride. The Fv/Fm decreased in the leaves of salt-treated transgenic plants, indicating that transgenic seeds were more sensitive to salt stress than that by the wild-type seeds. In addition, the negative effect on seed germination was more severe in transgenic plants than in the wild types under NaCl treatment conditions. The results support the hypothesis that plant trHb shares NO scavenging functions and characteristics with bacterial trHb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kubo H (1939) Über hämoprotein aus den wurzelknöllchen von leguminosen. Acta Phytochim 11:195–200

    CAS  Google Scholar 

  2. Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis ES, Peacock WJ (2001) Expression and evolution of functionally distinct Hb genes in plants. Plant Mol Biol 47:677–692

    Article  CAS  PubMed  Google Scholar 

  3. Trevaskis B, Watts RA, Andersson SR, Llewellyn DJ, Hargrove MS, Olson JS (1997) Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci USA 94:12230–12234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Watts RA, Hunt PW, Hvitved NA, Hargrove MS, Peacock WJ, Dennis ES (2001) A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc Natl Acad Sci USA 98:10119–10124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sarma HK, Sharma BK, Tiwari S, Mishra AK (2005) Truncated hemoglobins, a single structural motif with versatile functions in bacteria, plants and unicellular eukaryotes. Symbiosis 39:151–158

    CAS  Google Scholar 

  6. Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277:871–874

    Article  CAS  PubMed  Google Scholar 

  7. Milani M, Pesce A, Ouellet Y, Ascenzi P, Guertin M (2001) Mycobacterium tuberculosis HbN displays a protein tunnel suited for O2 diffusion to the heme. EMBO J 20:3902–3909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Milani M, Pesce A, Ouellet H, Guertin M, Bolognes M (2003) Truncated hemoglobins and nitric oxide action. IUBMB Life 55:623–627

    Article  CAS  PubMed  Google Scholar 

  9. Giangiacomo L, Ilari A, Boffi A, Morea V, Chiancone E (2005) The truncated oxygen-avid hemoglobin from Bacillus subtilis, X-ray structure and ligand-binding properties. J Biol Chem 280:9192–9202

    Article  CAS  PubMed  Google Scholar 

  10. Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  CAS  PubMed  Google Scholar 

  11. Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rio LA, Corpasa FJ, Barros JB (2004) Nitric oxide and nitric oxide synthase activity in plant. Phytochem 65:783–792

    Article  Google Scholar 

  13. Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Nitric oxide signaling functions in plant–pathogen interactions. Cell Microbiol 6:795–803

    Article  CAS  PubMed  Google Scholar 

  14. Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  15. Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Nitric oxide dioxygenase: an enzymic function for flavoHb. Proc Natl Acad Sci USA 95:10378–10383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hausladen A, Gow AJ, Stamler JS (1998) Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc Natl Acad Sci USA 95:14100–14105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hausladen A, Gow A, Stamler JS (2001) FlavoHb denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci USA 98:10108–10112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Perazzolli M, Romero-Puertas MC, Delledonne M (2005) Modulation of nitric oxide bioactivity by plant haemoglobins. J Exp Bot 57:479–488

    Article  PubMed  Google Scholar 

  19. Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B (2002) TrHb (HbN) protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci USA 99:5902–5907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F, Gómez-Rodríguez MV, Lmenero-Varea P, Del Río LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  21. Zhao MG, Tian QY, Zhang WH (2007) Nitric Oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Qiao W, Xiao S, Yu L, Fan LM (2009) Expression of a rice gene OsNOA1 re-establishes nitric oxide synthesis and stress-related gene expression for salt tolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoa1. Environ Exp Bot 65:90–98

    Article  CAS  Google Scholar 

  23. Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  24. Molassiotis A, Tanou G, Diamantidis G (2010) NO says more than “yes” to salt tolerance–salt priming and systemic nitric oxide signaling in plants. Plant Signal Behav 5:209–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kim DY, Hong MJ, Lee YJ, Lee MB, Seo YW (2013) Wheat truncated hemoglobin interacts with photosystem I PSK-I subunit and photosystem II subunit PsbS1. Biol Plant 57:281–290

    Article  CAS  Google Scholar 

  26. Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotech 16(664–668):670

    Google Scholar 

  27. Zhang X, Henriques R, Lin SS, Niu Q, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:1–6

    Article  Google Scholar 

  28. Schreiber U (2004) Pulse-amplitude-modulation fluorometry and saturation pulse method, an overview. In: Papageorgiou GC, Govindjee AD (eds) Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  29. Oliveira A, Singh S, Bidon-Chanal A, Forti F, Martí MA, Boechi L, Estrin DA, Dikshit KL, Luque FJ (2012) Role of PheE15 gate in ligand entry and nitric oxide detoxification function of mycobacterium tuberculosis truncated hemoglobin N. PLoS ONE 7:e49291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nardini M, Pesce A, Labarre M, Richard C, Bolli A, Ascenzi P, Guertin M, Bolognesi M (2006) Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni. J Biol Chem 281:37803–37812

    Article  CAS  PubMed  Google Scholar 

  31. Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  32. Gouvêa CMCP, Souza JF, Magalhâes CA, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    Article  Google Scholar 

  33. Gabriela CP, Marcela S, Susana P, Lorenzo L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  Google Scholar 

  34. Jacobi J, Elmer J, Russell K, Soundur R, Porterfield DM (2006) Nitric oxide and cGMP dependent signaling in Arabidopsis root growth. Gravit Space Biol 19:157–158

    Google Scholar 

  35. Pathania R, Navani NK, Gardner AM, Gardner PR, Dikshit KL (2002) Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol Microbiol 45:1303–1314

    Article  CAS  PubMed  Google Scholar 

  36. Niemann J, Tisa LS (2008) Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. J Bacteriol 190:7864–7867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  38. Leshem YY, Wills RBH, Ku VV (1998) Evidence for the function of the free radical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  39. Durner J, Klessing DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  40. García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1116–1120

    Article  Google Scholar 

  41. Ribeiro EA, Cunha FQ, Tamashiro WMSC, Martins LS (1999) Growth phase dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 445:283–286

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Xiao Q, Wu F, Dong X, He J, Pei Z (2010) Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30:1570–1585

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  44. Lin A, Yiqin W, Jiuyou T, Peng X, Chunlai L, Linchuan L, Bin H, Fuquan Y, Gary JL, Chengcai C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS ONE 6:e20714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Camejo D, Romero-Puertas Mdel C, Rodríguez-Serrano M, Sandalio LM, Lázaro JJ, Jiménez A, Sevilla F (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteomics 79:87–99

    Article  CAS  PubMed  Google Scholar 

  47. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  CAS  PubMed  Google Scholar 

  48. Zhang F, Wang Y, Wang D (2007) Role of nitric oxide and hydrogen peroxide during the salt resistance response. Plant Signal Behav 6:473–474

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ008031), Rural Development Administration, Republic of Korea and supported by a Korea University Grant. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2012M2A2A60-35566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Weon Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.Y., Hong, M.J. & Seo, Y.W. Role of wheat trHb in nitric oxide scavenging. Mol Biol Rep 41, 5931–5941 (2014). https://doi.org/10.1007/s11033-014-3468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3468-z

Keywords

Navigation