Skip to main content
Log in

The MTRR 66A>G polymorphism and maternal risk of birth of a child with Down syndrome in Caucasian women: a case–control study and a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We performed a large case–control study and a meta-analysis of the literature to address the role of the methionine synthase reductase (MTRR) c.66A>G polymorphism as a maternal risk factor for the birth of a child with Down Syndrome (DS) among Caucasian women. A total of 253 mothers of a DS child (MDS) and 298 control mothers of Italian origin were included in the case–control study. The meta-analysis of previous and present data involved a total of seven studies performed in Caucasian populations (971 MDS and 1,387 control mothers). Results from the meta-analysis indicated overall a positive significant association between MTRR c.66A>G genotype [OR 1.36 (95 % CI 1.10–1.68), dominant model] and allele frequencies [OR 1.26 (95 % CI 1.04–1.51), allele contrast model] and maternal risk of birth of a child with DS. A sensitivity analysis revealed some interesting differences between Europeans, Caucasians of European descent, and inhabitants of Mediterranean regions, suggesting the possibility of population-specific modifying factors. The case–control study revealed association of the polymorphism with increased folate levels, and a possible interaction with the methionine synthase (MTR) c.2756A>G one, that resulted in a borderline significant maternal risk of birth of a child with DS for the double heterozygous MTR 2756AG/MTRR 66AG genotype [OR 1.79 (95 % CI 1.00–3.18)]. Overall, present data suggest that the MTRR c.66A>G polymorphism represents a risk factor for the birth of a child with DS among white Caucasian women. However, the combined presence of other genetic factors and interactions with geographic and environmental ones, can modify the effect of the single polymorphism alone, leading to population specific effect sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bailey LB, Gregory JF III (1999) Folate metabolism and requirements. J Nutr 129(4):779–782

    CAS  PubMed  Google Scholar 

  2. Fenech M (2001) The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res 475(1–2):57–67

    Article  CAS  PubMed  Google Scholar 

  3. Antonarakis SE (1998) Down syndrome. In: Jameson JL (ed) Principle of molecular medicine. Humana Press Inc, Totowa, pp 1069–1078

    Chapter  Google Scholar 

  4. Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, Gu Y, Shen J, Saker D, May KM, Avramopoulos D, Petersen MB, Halberg A, Mikkelsen M, Hassold TJ, Sherman SL (1996) Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14(4):400–405

    Article  CAS  PubMed  Google Scholar 

  5. Morris JK, Mutton DE, Alberman E (2002) Revised estimates of the maternal age specific live birth prevalence of Down’s syndrome. J Med Screen 9(1):2–6

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Thomas P, Xue J, Fenech M (2004) Folate deficiency induces aneuploidy in human lymphocytes in vitro-evidence using cytokinesis-blocked cells and probes specific for chromosomes 17 and 21. Mutat Res 551(1–2):167–180

    Article  CAS  PubMed  Google Scholar 

  7. Beetstra S, Thomas P, Salisbury C, Turner J, Fenech M (2005) Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat Res 578(1–2):317–326

    Article  CAS  PubMed  Google Scholar 

  8. James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JB, Yi P, Tafoya DL, Swenson DH, Wilson VL, Gaylor DW (1999) Abnormal folate metabolism and mutation in the methylene tetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr 70(4):495–501

    CAS  PubMed  Google Scholar 

  9. Hobbs CA, Sherman SL, Yi P, Hopkins SE, Torfs CP, Hine RJ, Pogribna M, Rozen R, James SJ (2000) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 67(3):623–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Coppedè F (2009) The complex relationship between folate/homocysteine metabolism and risk of Down syndrome. Mutat Res 682(1):54–70

    Article  PubMed  Google Scholar 

  11. Zintzaras E (2007) Maternal gene polymorphisms involved in folate metabolism and risk of Down syndrome offspring: a meta-analysis. J Hum Genet 52(11):943–953

    Article  CAS  PubMed  Google Scholar 

  12. Rai V (2011) Polymorphism in folate metabolic pathway gene as maternal risk factor for Down syndrome. Int J Biol Med Res 2(4):1055–1060

    Google Scholar 

  13. Costa-Lima MA, Amorim MR, Orioli IM (2012) Association of methylenetetrahydrofolate reductase gene 677C > T polymorphism and Down syndrome. Mol Biol Rep 40(3):2115–2125

    Article  PubMed  Google Scholar 

  14. Amorim MR, Lima MA (2013) MTRR 66A>G polymorphism as maternal risk factor for Down syndrome: a meta-analysis. Genet Test Mol Biomark 17(1):69–73

    Article  CAS  Google Scholar 

  15. Coppedè F, Bosco P, Lorenzoni V, Migheli F, Barone C, Antonucci I, Stuppia L, Romano C, Migliore L (2013) The MTR 2756A>G polymorphism and maternal risk of birth of a child with Down syndrome: a case-control study and a meta-analysis. Mol Biol Rep 40(12):6913–6925

    Article  PubMed  Google Scholar 

  16. Coppedè F, Lorenzoni V, Migliore L (2013) The reduced folate carrier (RFC-1) 80A>G polymorphism and maternal risk of having a child with Down syndrome: a meta-analysis. Nutrients 5(7):2551–2563

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yang M, Gong T, Lin X, Qi L, Guo Y, Cao Z, Shen M, Du Y (2013) Maternal gene polymorphisms involved in folate metabolism and the risk of having a Down syndrome offspring: a meta-analysis. Mutagenesis 28(6):661–671

    Article  CAS  PubMed  Google Scholar 

  18. O’Leary VB, Parle-McDermott A, Molloy AM, Kirke PN, Johnson Z, Conley M, Scott JM, Mills JL (2002) MTRR and MTHFR polymorphism: link to Down syndrome? Am J Med Genet 107(2):151–155

    Article  PubMed  Google Scholar 

  19. da Silva LR, Vergani N, Galdieri Lde C, Ribeiro Porto MP, Longhitano SB, Brunoni D, D’Almeida V, Alvarez Perez AB (2005) Relationship between polymorphisms in genes involved in homocysteine metabolism and maternal risk for Down syndrome in Brazil. Am J Med Genet A 135(3):263–267

    Article  PubMed  Google Scholar 

  20. Zampieri BL, Biselli JM, Goloni-Bertollo EM, Vannucchi H, Carvalho VM, Cordeiro JA, Pavarino EC (2012) Maternal risk for Down syndrome is modulated by genes involved in folate metabolism. Dis Markers 32(2):73–81

    Article  PubMed Central  PubMed  Google Scholar 

  21. Martínez-Frías ML, Pérez B, Desviat LR, Castro M, Leal F, Rodríguez L, Mansilla E, Martínez-Fernández ML, Bermejo E, Rodríguez-Pinilla E, Prieto D, Ugarte M, ECEMC Working Group (2006) Maternal polymorphisms 677C-T and 1298A-C of MTHFR, and 66A-G MTRR genes: is there any relationship between polymorphisms of the folate pathway, maternal homocysteine levels, and the risk for having a child with Down syndrome? Am J Med Genet A 140(9):987–997

    Article  PubMed  Google Scholar 

  22. Coppedè F, Migheli F, Bargagna S, Siciliano G, Antonucci I, Stuppia L, Palka G, Migliore L (2009) Association of maternal polymorphisms in folate metabolizing genes with chromosome damage and risk of Down syndrome offspring. Neurosci Lett 449(1):15–19

    Article  PubMed  Google Scholar 

  23. Bosco P, Guéant-Rodriguez RM, Anello G, Barone C, Namour F, Caraci F, Romano A, Romano C, Guéant JL (2003) Methionine synthase (MTR) 2756 (A>G) polymorphism, double heterozygosity methionine synthase 2756 AG/methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down syndrome. Am J Med Genet A 121A(3):219–224

    Article  PubMed  Google Scholar 

  24. Chango A, Fillon-Emery N, Mircher C, Bléhaut H, Lambert D, Herbeth B, James SJ, Réthoré MO, Nicolas JP (2005) No association between common polymorphisms in genes of folate and homocysteine metabolism and the risk of Down’s syndrome among French mothers. Br J Nutr 94(2):166–169

    Article  CAS  PubMed  Google Scholar 

  25. Wang SS, Qiao FY, Feng L, Lv JJ (2008) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome in China. J Zhejiang Univ Sci B 9(2):93–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Santos-Rebouças CB, Corrêa JC, Bonomo A, Fintelman-Rodrigues N, Moura KC, Rodrigues CS, Santos JM, Pimentel MM (2008) The impact of folate pathway polymorphisms combined to nutritional deficiency as a maternal predisposition factor for Down syndrome. Dis Markers 25(3):149–157

    Article  PubMed Central  PubMed  Google Scholar 

  27. Scala I, Granese B, Sellitto M, Salomè S, Sammartino A, Pepe A, Mastroiacovo P, Sebastio G, Andria G (2006) Analysis of seven maternal polymorphisms of genes involved in homocysteine/folate metabolism and risk of Down syndrome offspring. Genet Med 8(7):409–416

    Article  CAS  PubMed  Google Scholar 

  28. Pozzi E, Vergani P, Dalprà L, Combi R, Silvestri D, Crosti F, Dell’Orto M, Valsecchi MG (2009) Maternal polymorphisms for methyltetrahydrofolate reductase and methionine synthetase reductase and risk of children with Down syndrome. Am J Obstet Gynecol 200(6):636

    Article  PubMed  Google Scholar 

  29. Liao YP, Bao MS, Liu CQ, Liu H, Zhang D (2010) Folate gene polymorphism and the risk of Down syndrome pregnancies in young Chinese women. Yi Chuan 32(5):461–466

    Article  CAS  PubMed  Google Scholar 

  30. Brandalize AP, Bandinelli E, Dos Santos PA, Schüler-Faccini L (2010) Maternal gene polymorphisms involved in folate metabolism as risk factors for Down syndrome offspring in Southern Brazil. Dis Markers 29(2):95–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mantel N, Haenszel W (1959) Statistical aspect of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  32. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  33. Higgins JP, Thompson SJ (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  34. Huedo-Medina TB, Sanchez-Meca J, Martin-Martinez F, Botella J (2006) Assessing heterogeneity in metaanalysis: Q statistics or I2 index? Psychol Methods 11(2):193–206

    Article  PubMed  Google Scholar 

  35. Barak AJ, Beckenhauer HC (1988) The influence of ethanol on hepatic transmethylation. Alcohol Alcohol 23(1):73–77

    CAS  PubMed  Google Scholar 

  36. Hollis ND, Allen EG, Oliver TR, Tinker SW, Druschel C, Hobbs CA, O’Leary LA, Romitti PA, Royle MH, Torfs CP, Freeman SB, Sherman SL, Bean LJ (2013) Preconception folic acid supplementation and risk for chromosome 21 nondisjunction: a report from the National Down Syndrome Project. Am J Med Genet A 161A(3):438–444

    Article  PubMed  Google Scholar 

  37. Skibola CF, Forrest MS, Coppedè F, Agana L, Hubbard A, Smith MT, Bracci PM, Holly EA (2004) Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood 104(7):2155–2162

    Article  CAS  PubMed  Google Scholar 

  38. Laraqui A, Allami A, Carrié A, Coiffard AS, Benkouka F, Benjouad A, Bendriss A, Kadiri N, Bennouar N, Benomar A, Guedira A, Raisonnier A, Fellati S, Srairi JE, Benomar M (2006) Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol 61(1):51–61

    Article  PubMed  Google Scholar 

  39. Coppedè F, Grossi E, Migheli F, Migliore L (2010) Polymorphisms in folate-metabolizing genes, chromosome damage, and risk of Down syndrome in Italian women: identification of key factors using artificial neural networks. BMC Med Genom 3:42

    Article  Google Scholar 

  40. Biselli JM, Goloni-Bertollo EM, Zampieri BL, Haddad R, Eberlin MN, Pavarino-Bertelli EC (2008) Genetic polymorphisms involved in folate metabolism and elevated plasma concentrations of homocysteine: maternal risk factors for Down syndrome in Brazil. Genet Mol Res 7(1):33–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Italian Ministry of Health (Ricerca Corrente 2012 entitled “Le malattie genetiche con ritardo mentale”) and “5 per mille” funding. We acknowledge Dr. S. Bargagna from IRCCS Stella Maris (Calambrone, PI) for her help in collecting MDS subjects from Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Coppedè.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 1042 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppedè, F., Bosco, P., Lorenzoni, V. et al. The MTRR 66A>G polymorphism and maternal risk of birth of a child with Down syndrome in Caucasian women: a case–control study and a meta-analysis. Mol Biol Rep 41, 5571–5583 (2014). https://doi.org/10.1007/s11033-014-3462-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3462-5

Keywords

Navigation