Skip to main content
Log in

The MTR 2756A>G polymorphism and maternal risk of birth of a child with Down syndrome: a case–control study and a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Methionine synthase (MTR) is required for the conversion of homocysteine (hcy) to methionine in the one-carbon metabolic pathway. Previous studies investigating a common MTR 2756A>G polymorphism as a maternal risk factor for the birth of a child with Down syndrome (DS) are conflicting and limited by small case–control cohorts, and its contribution to circulating hcy levels is still debated. We performed a large case–control study and a meta-analysis of the literature to further address the role of MTR 2756A>G as a maternal risk factor for the birth of a child with DS. 286 mothers of a DS child (MDS) and 305 control mothers of Italian origin were included in the case–control study. Genotyping was performed by means of PCR/RFLP technique. Data on circulating levels of hcy, folates, and vitamin B12 were available for 189 MDS and 194 control mothers. The meta analysis of previous and present data involved a total of 8 studies (1,171 MDS and 1,402 control mothers). Both the case–control study and the meta-analysis showed no association of MTR 2756A>G with the maternal risk of birth of a child with DS (OR = 1.15; 95 % CI 0.85–1.55, and OR = 1.08; 95 % CI 0.93–1.25, respectively), even after stratification of the overall data available for the meta-analysis into ethnic groups. No association of the studied polymorphism with circulating levels of hcy, folates, and vitamin B12 was observed. Present data do not support a role for MTR 2756A>G as independent maternal risk factor for a DS birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bailey LB, Gregory JF 3rd (1999) Folate metabolism and requirements. J Nutr 129(4):779–782

    PubMed  CAS  Google Scholar 

  2. Fenech M (2001) The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res 475(1–2):57–67

    Article  PubMed  CAS  Google Scholar 

  3. Antonarakis SE (1998) Down syndrome. In: Jameson JL (ed) Principle of molecular medicine. Humana Press Inc, Totowa (NJ), pp 1069–1078

    Chapter  Google Scholar 

  4. Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, Gu Y, Shen J, Saker D, May KM, Avramopoulos D, Petersen MB, Halberg A, Mikkelsen M, Hassold TJ, Sherman SL (1996) Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14(4):400–405

    Article  PubMed  CAS  Google Scholar 

  5. Morris JK, Mutton DE, Alberman E (2002) Revised estimates of the maternal age specific live birth prevalence of Down’s syndrome. J Med Screen 9(1):2–6

    Article  PubMed  CAS  Google Scholar 

  6. Wang X, Thomas P, Xue J, Fenech M (2004) Folate deficiency induces aneuploidy in human lymphocytes in vitro-evidence using cytokinesis-blocked cells and probes specific for chromosomes 17 and 21. Mutat Res 551(1–2):167–180

    Article  PubMed  CAS  Google Scholar 

  7. Beetstra S, Thomas P, Salisbury C, Turner J, Fenech M (2005) Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat Res 578(1–2):317–326

    Article  PubMed  CAS  Google Scholar 

  8. James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JB, Yi P, Tafoya DL, Swenson DH, Wilson VL, Gaylor DW (1999) Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr 70(4):495–501

    PubMed  CAS  Google Scholar 

  9. Hobbs CA, Sherman SL, Yi P, Hopkins SE, Torfs CP, Hine RJ, Pogribna M, Rozen R, James SJ (2000) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 67(3):623–630

    Article  PubMed  CAS  Google Scholar 

  10. Bosco P, Guéant-Rodriguez RM, Anello G, Barone C, Namour F, Caraci F, Romano A, Romano C, Guéant JL (2003) Methionine synthase (MTR) 2756 (A>G) polymorphism, double heterozygosity methionine synthase 2756 AG/methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down syndrome. Am J Med Genet A 121A(3):219–224

    Article  PubMed  Google Scholar 

  11. Coppedè F (2009) The complex relationship between folate/homocysteine metabolism and risk of Down syndrome. Mutat Res 682(1):54–70

    Article  PubMed  Google Scholar 

  12. Coppedè F, Marini G, Bargagna S, Stuppia L, Minichilli F, Fontana I, Colognato R, Astrea G, Palka G, Migliore L (2006) Folate gene polymorphisms and the risk of Down syndrome pregnancies in young Italian women. Am J Med Genet A 140(10):1083–1091

    Article  PubMed  Google Scholar 

  13. Martínez-Frías ML, Pérez B, Desviat LR, Castro M, Leal F, Rodríguez L, Mansilla E, Martínez-Fernández ML, Bermejo E, Rodríguez-Pinilla E, Prieto D, Ugarte M, ECEMC Working Group (2006) Maternal polymorphisms 677C-T and 1298A-C of MTHFR, and 66A-G MTRR genes: is there any relationship between polymorphisms of the folate pathway, maternal homocysteine levels, and the risk for having a child with Down syndrome? Am J Med Genet A 140(9):987–997

    Google Scholar 

  14. Scala I, Granese B, Sellitto M, Salomè S, Sammartino A, Pepe A, Mastroiacovo P, Sebastio G, Andria G (2006) Analysis of seven maternal polymorphisms of genes involved in homocysteine/folate metabolism and risk of Down syndrome offspring. Genet Med 8(7):409–416

    Article  PubMed  CAS  Google Scholar 

  15. Brandalize AP, Bandinelli E, dos Santos PA, Roisenberg I, Schüler-Faccini L (2009) Evaluation of C677T and A1298C polymorphisms of the MTHFR gene as maternal risk factors for Down syndrome and congenital heart defects. Am J Med Genet A 149A(10):2080–2087

    Article  PubMed  CAS  Google Scholar 

  16. Liao YP, Bao MS, Liu CQ, Liu H, Zhang D (2010) Folate gene polymorphism and the risk of Down syndrome pregnancies in young Chinese women. Yi Chuan 32(5):461–466

    Article  PubMed  CAS  Google Scholar 

  17. Coppedè F, Grossi E, Migheli F, Migliore L (2010) Polymorphisms in folate-metabolizing genes, chromosome damage, and risk of Down syndrome in Italian women: identification of key factors using artificial neural networks. BMC Med Genomics 3:42

    Article  PubMed  Google Scholar 

  18. Brandalize AP, Bandinelli E, Dos Santos PA, Schüler-Faccini L (2010) Maternal gene polymorphisms involved in folate metabolism as risk factors for Down syndrome offspring in Southern Brazil. Dis Markers 29(2):95–101

    Article  PubMed  CAS  Google Scholar 

  19. Locke AE, Dooley KJ, Tinker SW, Cheong SY, Feingold E, Allen EG, Freeman SB, Torfs CP, Cua CL, Epstein MP, Wu MC, Lin X, Capone G, Sherman SL, Bean LJ (2010) Variation in folate pathway genes contributes to risk of congenital heart defects among individuals with Down syndrome. Genet Epidemiol 34(6):613–623

    Article  PubMed  Google Scholar 

  20. Bean LJ, Allen EG, Tinker SW, Hollis ND, Locke AE, Druschel C, Hobbs CA, O’Leary L, Romitti PA, Royle MH, Torfs CP, Dooley KJ, freeman SB, Sherman SL (2011) Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: a report from the National Down Syndrome Project. Birth Defects Res A Clin Mol Teratol 91(10):885–893

    Article  PubMed  CAS  Google Scholar 

  21. Zampieri BL, Biselli JM, Goloni-Bertollo EM, Vannucchi H, Carvalho VM, Cordeiro JA, Pavarino EC (2012) Maternal risk for Down syndrome is modulated by genes involved in folate metabolism. Dis Markers 32(2):73–81

    Article  PubMed  Google Scholar 

  22. Zintzaras E (2007) Maternal gene polymorphisms involved in folate metabolism and risk of Down syndrome offspring: a meta-analysis. J Hum Genet 52(11):943–953

    Article  PubMed  CAS  Google Scholar 

  23. Medica I, Maver A, Augusto GF, Peterlin B (2009) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome—meta-analysis. Centr Eur J Med 4(4):395–408

    Article  CAS  Google Scholar 

  24. Costa-Lima MA, Amorim MR, Orioli IM (2012) Association of methylenetetrahydrofolate reductase gene 677C>T polymorphism and Down syndrome. Mol Biol Rep (in press)

  25. Amorim MR, Lima MA (2013) MTRR 66A>G polymorphism as maternal risk factor for down syndrome: a meta-analysis. Genet Test Mol Biomarkers 17(1):69–73

    Article  PubMed  CAS  Google Scholar 

  26. Chango A, Fillon-Emery N, Mircher C, Bléhaut H, Lambert D, Herbeth B, James SJ, Réthoré MO, Nicolas JP (2005) No association between common polymorphisms in genes of folate and homocysteine metabolism and the risk of Down’s syndrome among French mothers. Br J Nutr 94(2):166–169

    Article  PubMed  CAS  Google Scholar 

  27. da Silva LR, Vergani N, Galdieri Lde C, Ribeiro Porto MP, Longhitano SB, Brunoni D, D’Almeida V, Alvarez Perez AB (2005) Relationship between polymorphisms in genes involved in homocysteine metabolism and maternal risk for Down syndrome in Brazil. Am J Med Genet A 135(3):263–267

    Article  PubMed  Google Scholar 

  28. Coppedè F, Migheli F, Bargagna S, Siciliano G, Antonucci I, Stuppia L, Palka G, Migliore L (2009) Association of maternal polymorphisms in folate metabolizing genes with chromosome damage and risk of Down syndrome offspring. Neurosci Lett 449(1):15–19

    Article  PubMed  Google Scholar 

  29. Fintelman-Rodrigues N, Corrêa JC, Santos JM, Pimentel MM, Santos-Rebouças CB (2009) Investigation of CBS, MTR, RFC-1 and TC polymorphisms as maternal risk factors for Down syndrome. Dis Markers 26(4):155–161

    Article  PubMed  CAS  Google Scholar 

  30. Biselli JM, Goloni-Bertollo EM, Zampieri BL, Haddad R, Eberlin MN, Pavarino-Bertelli EC (2008) Genetic polymorphisms involved in folate metabolism and elevated plasma concentrations of homocysteine: maternal risk factors for Down syndrome in Brazil. Genet Mol Res 7(1):33–42

    Article  PubMed  CAS  Google Scholar 

  31. Harmon DL, Shields DC, Woodside JV, McMaster D, Yarnell JW, Young IS, Peng K, Shane B, Evans AE, Whitehead AS (1999) Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 17(4):298–309

    Article  PubMed  CAS  Google Scholar 

  32. Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA, Sanchez-Cespedes M, Herman JG, Esteller M (2002) Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 62(15):4519–4524

    PubMed  CAS  Google Scholar 

  33. Laraqui A, Allami A, Carrié A, Coiffard AS, Benkouka F, Benjouad A, Bendriss A, Kadiri N, Bennouar N, Benomar A, Guedira A, Raisonnier A, Fellati S, Srairi JE, Benomar M (2006) Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol 61(1):51–61

    Article  PubMed  Google Scholar 

  34. Coppedè F, Tannorella P, Pezzini I, Migheli F, Ricci G, Caldarazzo lenco E, Piaceri I, Polini A, Nacmias B, Monzani F, Sorbi S, Siciliano G, Migliore L (2012) Folate, homocysteine, vitamin B12, and polymorphisms of genes participating in one-carbon metabolism in late-onset Alzheimer’s disease patients and healthy controls. Antioxid Redox Signal 17(4):195–204

    Google Scholar 

  35. Guéant JL, Guéant-Rodriguez RM, Anello G, Bosco P, Brunaud L, Romano C, Ferri R, Romano A, Candito M, Namour B (2003) Genetic determinants of folate and vitamin B12 metabolism: a common pathway in neural tube defect and Down syndrome? Clin Chem Lab Med 41(11):1473–1477

    Article  PubMed  Google Scholar 

  36. Fillon-Emery N, Chango A, Mircher C, Barbé F, Bléhaut H, Herbeth B, Rosenblatt DS, Réthoré MO, Lambert D, Nicolas JP (2004) Homocysteine concentrationsin adultswith trisomy 21: effect of B vitamins and genetic polymorphisms. Am J Clin Nutr 80(6):1551–1557

    PubMed  CAS  Google Scholar 

  37. Biselli JM, Goloni-Bertollo EM, Haddad R, Eberlin MN, Pavarino-Bertelli EC (2008) The MTR A2756G polymorphism is associated with an increase of plasma homocysteine concentration in Brazilian individuals with Down syndrome. Braz J Med Biol Res 41(1):34–40

    Article  PubMed  CAS  Google Scholar 

  38. Biselli JM, Zampieri BL, Goloni-Bertollo EM, Haddad R, Fonseca MF, Eberlin MN, Vannucchi H, Carvalho VM, Pavarino EC (2012) Genetic polymorphisms modulate the folate metabolism of Brazilian individuals with Down syndrome. Mol Biol Rep 39(10):9277–9284

    Article  PubMed  CAS  Google Scholar 

  39. Coppedè F, Colognato R, Bonelli A, Astrea G, Bargagna S, Siciliano G, Migliore L (2007) Polymorphisms in folate and homocysteine metabolizing genes and chromosome damage in mothers of Down syndrome children. Am J Med Genet A 143A(17):2006–2015

    Article  PubMed  Google Scholar 

  40. Mantel N, Haenszel W (1959) Statistical aspect of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    PubMed  CAS  Google Scholar 

  41. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  PubMed  CAS  Google Scholar 

  42. Higgins JP, Thompson SJ (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  43. Huedo-Medina TB, Sanchez-Meca J, Martin-Martinez F, Botella J (2006) Assessing heterogeneity in metaanalysis: Q statistics or I 2 index? Psychol Methods 11(2):193–206

    Article  PubMed  Google Scholar 

  44. Barbosa PR, Stabler SP, Machado AL, Braga RC, Hirata RD, Hirata MH, Sampaio-Neto LF, Allen RH, Guerra-Shinohara EM (2008) Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur J Clin Nutr 62(8):1010–1021

    Article  PubMed  CAS  Google Scholar 

  45. Barbosa PR, Stabler SP, Trentin R, Carvalho FR, Luchessi AD, Hirata RD, Hirata MH, Allen RH, Guerra-Shinohara EM (2008) Evaluation of nutritional and genetic determinants of total homocysteine, methylmalonic acid and S-adenosylmethionine/S-adenosylhomocysteine values in Brazilian childbearing-age women. Clin Chim Acta 388(1–2):139–147

    Article  PubMed  CAS  Google Scholar 

  46. Palep-Singh M, Picton HM, Yates ZR, Barth JH, Balen AH (2008) Plasma homocysteine concentrations and the single nucleotide polymorphisms in the methionine synthase gene (MTR 2756A>G): associations with the polycystic ovary syndrome an observational study. Eur J Obstet Gynecol Reprod Biol 138(2):180–186

    Article  PubMed  CAS  Google Scholar 

  47. Summers CM, Mitchell LE, Stanislawska-Sachadyn A, Baido SF, Blair IA, Von Feldt JM, Whitehead AS (2010) Genetic and lifestyle variables associated with homocysteine concentrations and the distribution of folate derivatives in healthy premenopausal women. Birth Defects Res A Clin Mol Teratol 88(8):679–688

    Article  PubMed  CAS  Google Scholar 

  48. Yakub M, Moti N, Parveen S, Chaudhry B, Azam I, Iqbal MP (2012) Polymorphisms in MTHFR, MS and CBS genes and homocysteine levels in a Pakistani population. PLoS ONE 7(3):e33222

    Article  PubMed  CAS  Google Scholar 

  49. Feix A, Fritsche-Polanz R, Kletzmayr J, Vychytil A, Hörl WH, Sunder-Plassmann G, Födinger M (2001) Increased prevalence of combined MTR and MTHFR genotypes among individuals with severely elevated total homocysteine plasma levels. Am J Kidney Dis 38(5):956–964

    Article  PubMed  CAS  Google Scholar 

  50. Kim OJ, Hong SP, Ahn JY, Hong SH, Hwang TS, Kim SO, Yoo W, Oh D, Kim NK (2007) Influence of combined methionine synthase (MTR 2756A>G) and methylenetetrahydrofolate reductase (MTHFR677C>T) polymorphisms to plasma homocysteine levels in Korean patients with ischemic stroke. Yonsei Med J 48(2):201–209

    Article  PubMed  CAS  Google Scholar 

  51. Kim SY, Park SY, Choi JW, Kim do J, Lee SY, Lim JH, Han JY, Ryu HM, Kim MH (2011). Association between MTHFR 1298A>C polymorphism and spontaneous abortion with fetal chromosomal aneuploidy. Am J Reprod Immunol 66(4):252–258

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the following funds: Italian Ministry of Health (Ricerca Corrente 2012 entitled “Le malattie genetiche con ritardo mentale”) and “5 per mille” funding. The authors acknowledge Dr. S. Bargagna from IRCCS Stella Maris (Calambrone, PI) for her help in collecting MDS subjects from Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Coppedè.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppedè, F., Bosco, P., Lorenzoni, V. et al. The MTR 2756A>G polymorphism and maternal risk of birth of a child with Down syndrome: a case–control study and a meta-analysis. Mol Biol Rep 40, 6913–6925 (2013). https://doi.org/10.1007/s11033-013-2810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2810-1

Keywords

Navigation