Skip to main content

Advertisement

Log in

Integrated miRNA and mRNA transcriptomes of porcine alveolar macrophages (PAM cells) identifies strain-specific miRNA molecular signatures associated with H-PRRSV and N-PRRSV infection

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant viral diseases in swine, which causes large economic losses to the swine industry worldwide. There is considerable strain variation in PRRSV and two examples of this are the highly virulent Chinese-type PRRSV (H-PRRSV) and the classical North American type PRRSV (N-PRRSV), both with different pathogenesis. These differences may be due in part to genetic and phenotypic differences in virus replication, but also interaction with the host cell. MicroRNAs (miRNAs) are crucial regulators of gene expression and play vital roles in virus and host interactions. However, the regulation role of miRNAs during PRRSV infection has not been systematically investigated. In order to better understand the differential regulation roles of cellular miRNAs in the host response to PRRSV, miRNA expression and a global mRNA transcriptome profile was determined in primary cells infected with either H-PRRSV or N-PRRSV as multiple time points during the viral lifecycle. miRNA-mRNA interactome networks were constructed by integrating the differentially expressed miRNAs and inversely correlated target mRNAs. Using gene ontology and pathway enrichment analyses, cellular pathways associated with deregulated miRNAs were identified, including immune response, phagosome, autophagy, lysosome, autolysis, apoptosis and cell cycle regulation. To our knowledge, this is the first global analysis of strain-specific host miRNA molecular signatures associated with H- and N-PRRSV infection by integrating miRNA and mRNA transcriptomes and provides a new perspective on the contribution of miRNAs to the pathogenesis of PRRSV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albina E (1997) Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. Vet Microbiol 55(1–4):309–316

    Article  CAS  PubMed  Google Scholar 

  2. Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 227(3):385–392

    Article  PubMed  Google Scholar 

  3. Meulenberg JJ, Hulst MM, de Meijer EJ, Moonen PL, den Besten A, de Kluyver EP, Wensvoort G, Moormann RJ (1993) Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192(1):62–72

    Article  CAS  PubMed  Google Scholar 

  4. Duan X, Nauwynck HJ, Pensaert MB (1997) Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol 56(1–2):9–19. doi:10.1016/S0378-1135(96)01347-8

    Article  CAS  PubMed  Google Scholar 

  5. Thanawongnuwech R, Thacker EL, Halbur PG (1997) Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs). Vet Immunol Immunopathol 59(3–4):323–335

    Article  CAS  PubMed  Google Scholar 

  6. Galina L, Pijoan C, Sitjar M, Christianson WT, Rossow K, Collins JE (1994) Interaction between Streptococcus suis serotype 2 and porcine reproductive and respiratory syndrome virus in specific pathogen-free piglets. Vet Rec 134(3):60–64

    Article  CAS  PubMed  Google Scholar 

  7. Baoqing G, Zhangshui C, Wenxing l, Yizhu C (1996) Isolation and identification of porcine reproductory and respiratory syndrome (PRRS) virus from aborted fetuses suspected of PRRS. Chin J Prev Vet Med 87:1–5

    Google Scholar 

  8. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF (2007) Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE 2(6):e526. doi:10.1371/journal.pone.0000526

    Article  PubMed Central  PubMed  Google Scholar 

  9. Normile D (2007) Virology. China, Vietnam grapple with ‘rapidly evolving’ pig virus. Science 317(5841):1017. doi:10.1126/science.317.5841.1017

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Wang X, Bo K, Tang B, Yang B, Jiang W, Jiang P (2007) Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Vet J 174(3):577–584. doi:10.1016/j.tvjl.2007.07.032

    Article  CAS  PubMed  Google Scholar 

  11. Zhou YJ, Hao XF, Tian ZJ, Tong GZ, Yoo D, An TQ, Zhou T, Li GX, Qiu HJ, Wei TC, Yuan XF (2008) Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transbound Emerg Dis 55(3–4):152–164. doi:10.1111/j.1865-1682.2008.01020.x

    Article  CAS  PubMed  Google Scholar 

  12. Chen NH, Chen XZ, Hu DM, Yu XL, Wang LL, Han W, Wu JJ, Cao Z, Wang CB, Zhang Q, Wang BY, Tian KG (2009) Rapid differential detection of classical and highly pathogenic North American porcine reproductive and respiratory syndrome virus in China by a duplex real-time RT-PCR. J Virol Methods 161(2):192–198. doi:10.1016/j.jviromet.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  13. Xiao S, Jia J, Mo D, Wang Q, Qin L, He Z, Zhao X, Huang Y, Li A, Yu J, Niu Y, Liu X, Chen Y (2010) Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS ONE 5(6):e11377. doi:10.1371/journal.pone.0011377

    Article  PubMed Central  PubMed  Google Scholar 

  14. Xiao S, Mo D, Wang Q, Jia J, Qin L, Yu X, Niu Y, Zhao X, Liu X, Chen Y (2010) Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genom 11:544. doi:10.1186/1471-2164-11-544

    Article  Google Scholar 

  15. Xiao S, Wang Q, Jia J, Cong P, Mo D, Yu X, Qin L, Li A, Niu Y, Zhu K, Wang X, Liu X, Chen Y (2010) Proteome changes of lungs artificially infected with H-PRRSV and N-PRRSV by two-dimensional fluorescence difference gel electrophoresis. Virol J 7:107. doi:10.1186/1743-422X-7-107

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  17. Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3(6):375–387. doi:10.1016/j.chom.2008.05.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141. doi:10.1146/annurev.micro.112408.134243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG (2010) MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84(6):3023–3032. doi:10.1128/JVI.02203-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Loveday EK, Svinti V, Diederich S, Pasick J, Jean F (2012) Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection. J Virol 86(11):6109–6122. doi:10.1128/JVI.06892-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Buggele WA, Johnson KE, Horvath CM (2012) Influenza A virus infection of human respiratory cells induces primary microRNA expression. J Biol Chem 287(37):31027–31040. doi:10.1074/jbc.M112.387670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X (2009) MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183(3):2150–2158. doi:10.4049/jimmunol.0900707

    Article  CAS  PubMed  Google Scholar 

  23. Lagos D, Pollara G, Henderson S, Gratrix F, Fabani M, Milne RS, Gotch F, Boshoff C (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12(5):513–519. doi:10.1038/ncb2054

    Article  CAS  PubMed  Google Scholar 

  24. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581. doi:10.1126/science.1113329

    Article  CAS  PubMed  Google Scholar 

  25. Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, Junemann C, Niepmann M (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27(24):3300–3310. doi:10.1038/emboj.2008.244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jangra RK, Yi M, Lemon SM (2010) Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 84(13):6615–6625. doi:10.1128/JVI.00417-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ahluwalia JK, Khan SZ, Soni K, Rawat P, Gupta A, Hariharan M, Scaria V, Lalwani M, Pillai B, Mitra D, Brahmachari SK (2008) Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 5:117. doi:10.1186/1742-4690-5-117

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM (2009) Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 34(6):696–709. doi:10.1016/j.molcel.2009.06.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chiang K, Sung TL, Rice AP (2012) Regulation of cyclin T1 and HIV-1 Replication by microRNAs in resting CD4+ T lymphocytes. J Virol 86(6):3244–3252. doi:10.1128/JVI.05065-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Swaminathan S, Suzuki K, Seddiki N, Kaplan W, Cowley MJ, Hood CL, Clancy JL, Murray DD, Mendez C, Gelgor L, Anderson B, Roth N, Cooper DA, Kelleher AD (2012) Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J Immunol 188(12):6238–6246. doi:10.4049/jimmunol.1101196

    Article  CAS  PubMed  Google Scholar 

  31. Guo XK, Zhang Q, Gao L, Li N, Chen XX, Feng WH (2013) Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J Virol 87(2):1159–1171. doi:10.1128/JVI.02386-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang D, Cao L, Xu Z, Fang L, Zhong Y, Chen Q, Luo R, Chen H, Li K, Xiao S (2013) MiR-125b reduces porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-kappaB pathway. PLoS ONE 8(2):e55838. doi:10.1371/journal.pone.0055838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F et al (1991) Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q 13(3):121–130. doi:10.1080/01652176.1991.9694296

    Article  CAS  PubMed  Google Scholar 

  34. Zhao W, Liu W, Tian D, Tang B, Wang Y, Yu C, Li R, Ling Y, Wu J, Song S, Hu S (2011) wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 27(21):3076–3077. doi:10.1093/bioinformatics/btr504

    Article  CAS  PubMed  Google Scholar 

  35. Risso D, Schwartz K, Sherlock G, Dudoit S (2011) GC-content normalization for RNA-Seq data. BMC Bioinformatics 12:480. doi:10.1186/1471-2105-12-480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. doi:10.1186/gb-2010-11-10-r106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D, Stephens RM, Green JE (2011) Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol 12(8):R77. doi:10.1186/gb-2011-12-8-r77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363. doi:10.1371/journal.pbio.0020363

    Article  PubMed Central  PubMed  Google Scholar 

  39. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1. doi:10.1186/gb-2003-5-1-r1

    Article  PubMed Central  PubMed  Google Scholar 

  40. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.1239303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hussain M, Asgari S (2010) Functional analysis of a cellular microRNA in insect host-ascovirus interaction. J Virol 84(1):612–620. doi:10.1128/JVI.01794-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Costers S, Lefebvre DJ, Delputte PL, Nauwynck HJ (2008) Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch Virol 153(8):1453–1465. doi:10.1007/s00705-008-0135-5

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Guo X, Ge X, Chen Y, Sun Q, Yang H (2009) Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J Proteome Res 8(6):3091–3097. doi:10.1021/pr900002f

    Article  CAS  PubMed  Google Scholar 

  44. Lu Q, Bai J, Zhang L, Liu J, Jiang Z, Michal JJ, He Q, Jiang P (2012) Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. J Proteome Res 11(5):2890–2903. doi:10.1021/pr201266z

    Article  CAS  PubMed  Google Scholar 

  45. Genini S, Delputte PL, Malinverni R, Cecere M, Stella A, Nauwynck HJ, Giuffra E (2008) Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. J Gen Virol 89(Pt 10):2550–2564. doi:10.1099/vir.0.2008/003244-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O, Thomas MJ, Basler CF, Palese P, Taubenberger JK, Garcia-Sastre A, Swayne DE, Katze MG (2006) Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443(7111):578–581. doi:10.1038/nature05181

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Wang Y, Brahmakshatriya V, Lupiani B, Reddy SM, Soibam B, Benham AL, Gunaratne P, Liu HC, Trakooljul M, Ing N, Okimoto R, Zhou H (2012) Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genom 13(1):278. doi:10.1186/1471-2164-13-278

    Article  CAS  Google Scholar 

  48. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13(10):1241–1247. doi:10.1038/nm1639

    Article  CAS  PubMed  Google Scholar 

  49. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L, Li Y, Katze MG, Feldmann H, Kawaoka Y (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445(7125):319–323. doi:10.1038/nature05495

    Article  CAS  PubMed  Google Scholar 

  50. Katze MG, Fornek JL, Palermo RE, Walters KA, Korth MJ (2008) Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nat Rev Immunol 8(8):644–654. doi:10.1038/nri2377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Beijing Institute of Genomics (BIG) of Chinese Academy of Sciences (CAS) and Novel Bioinformatics Co. Ltd. for providing technical assistance in deep sequencing and bioinformatics analysis. This work was supported by National Natural Science Foundation of China (Grant No. 31101690) and Open Project grant of the State Key Laboratory of Biocontrol (Grant No. SKLBC12K13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqi Xiao.

Additional information

Peiqing Cong and Shuqi Xiao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, P., Xiao, S., Chen, Y. et al. Integrated miRNA and mRNA transcriptomes of porcine alveolar macrophages (PAM cells) identifies strain-specific miRNA molecular signatures associated with H-PRRSV and N-PRRSV infection. Mol Biol Rep 41, 5863–5875 (2014). https://doi.org/10.1007/s11033-014-3460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3460-7

Keywords

Navigation