Skip to main content
Log in

Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barritt BH (1999) The necessity of adopting new apple varieties to meet consumer needs. Compact Fruit Tree 32(2):38–43

    Google Scholar 

  2. Food and Agriculture Organization Statistics, http://faostat.fao.org. 2009, 2010, 2011

  3. Ling K, Hongmei H, Zhenying Y, Xiaoxu L, Guodong K (2009) The Advances in the Research of Apple Ring Rot. Chin Agric Sci Bull 9:39

    Google Scholar 

  4. Tang W, Ding Z, Zhou Z, Wang Y, Guo L (2012) Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Disease 96 (4):486–496

  5. Poleatewich AM, Ngugi HK, Backman PA (2012) Assessment of application timing of Bacillus spp. to suppress pre-and postharvest diseases of apple. Plant Dis 96(2):211–220

    Article  Google Scholar 

  6. Narayanasamy P (2008) Genetic resistance of crops to diseases. In: Molecular biology in plant pathogenesis and disease management. Springer, Netherlands, pp 23–170. doi:10.1007/978-1-4020-8247-4_3

  7. Liu Z (2009) Studies on screening for apple germplasm and genes resistant to ring rot disease, and NO-mediated defensive responses. PhD thesis. Shandong Agricultural University, Tai’an, China

  8. Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H-B, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14(4):508–515

    Article  CAS  PubMed  Google Scholar 

  9. Unver T, Namuth-Covert DM, Budak H (2009) Review of current methodological approaches for characterizing micrornas in plants. Int J Plant Genomics. doi:10.1155/2009/262463

    Google Scholar 

  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  11. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

  12. Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579(26):5923–5931

    Article  CAS  PubMed  Google Scholar 

  13. Blahna MT, Hata A (2013) Regulation of miRNA biogenesis as an integrated component of growth factor signaling. Curr Opin Cell Biol 25(2):233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16

    Article  CAS  PubMed  Google Scholar 

  15. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309

    Article  CAS  PubMed  Google Scholar 

  16. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell Online 18(8):2051–2065

    Article  CAS  Google Scholar 

  17. Shin H, Shin HS, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45(5):712–726

    Article  CAS  PubMed  Google Scholar 

  18. Lappartient AG, Vidmar JJ, Leustek T, Glass AD, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18(1):89–95

    Article  CAS  PubMed  Google Scholar 

  19. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during Trans-Acting siRNA biogenesis in plants. Cell 121(2):207–221

    Article  CAS  PubMed  Google Scholar 

  20. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354(2):585–590

    Article  CAS  PubMed  Google Scholar 

  21. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237–242

    Article  CAS  PubMed  Google Scholar 

  22. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439

    Article  CAS  PubMed  Google Scholar 

  23. Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779(11):743–748

    Article  CAS  PubMed  Google Scholar 

  24. Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51(6):1077–1098

    Article  CAS  PubMed  Google Scholar 

  25. Bazzini A, Hopp H, Beachy R, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci 104(29):12157–12162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4(2):205–217

    Article  CAS  PubMed  Google Scholar 

  27. Naqvi AR, Haq Q, Mukherjee SK (2010) MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 7(1):281

    Article  PubMed Central  PubMed  Google Scholar 

  28. Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199(1):212–227

    Article  CAS  PubMed  Google Scholar 

  29. Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genom 9(1):160

    Article  Google Scholar 

  30. Li GX, Gao YM, Yang H, Liu XC, Sun LJ, Wang JJ (2005) Observation of infection approach of Botryosphaeria berengriana f. piricola on apple stem under scanning electron microscope. J Fruit Sci 2:20

    Google Scholar 

  31. Cai BH, Zhang JY, Gao ZH, Qu SC, Tong ZG, Mi L, Qiao YS, Zhang Z (2008) An improved method for isolation of total RNA from the leaves of Fragaria spp. Jiangsu J Agric Sci 24(6):875–877

    Google Scholar 

  32. Wang XW, Xiong AS, Yao QH, Zhang Z, Qiao YS (2010) Direct isolation of high-quality low molecular weight RNA of pear peel from the extraction mixture containing nucleic acid. Mol Biotechnol 44(1):61–65

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM (2009) Enrichment of a set of microRNAs during the cotton fiber development. BMC Genom 10(1):457

    Article  Google Scholar 

  35. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

  36. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Curr Biol 15(22):2038–2043

    Article  CAS  PubMed  Google Scholar 

  37. Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  CAS  PubMed  Google Scholar 

  38. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M (2003) A uniform system for microRNA annotation. RNA 9(3):277–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20(17):2911–2917

    Article  CAS  PubMed  Google Scholar 

  40. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kawashima CG, Matthewman CA, Huang S, Lee BR, Yoshimoto N, Koprivova A, Rubio-Somoza I, Todesco M, Rathjen T, Saito K (2011) Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J 66(5):863–876

    Article  CAS  PubMed  Google Scholar 

  42. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen Y-Q, Qu L-H (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580(21):5111–5116

    Article  CAS  PubMed  Google Scholar 

  44. Bari R, Pant BD, Stitt M, Scheible W-R (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141(3):988–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible W-R (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150(3):1541–1555

    Article  PubMed Central  PubMed  Google Scholar 

  46. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354(2):585–590

    Article  CAS  PubMed  Google Scholar 

  48. Wang T, Chen L, Zhao M, Tian Q, Zhang W (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genom 12(1):367

    Article  CAS  Google Scholar 

  49. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42(10):833–839

    Article  CAS  PubMed  Google Scholar 

  50. Yu H, Song C, Jia Q, Wang C, Li F, Nicholas KK, Zhang X, Fang J (2011) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plant 141(1):56–70

    Article  CAS  PubMed  Google Scholar 

  51. Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13(6):47

    Article  Google Scholar 

  52. Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11(1):5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Liu H, Jia S, Shen D, Liu J, Li J, Zhao H, Han S, Wang Y (2012) Four AUXIN RESPONSE FACTOR genes downregulated by microRNA167 are associated with growth and development in Oryza sativa. Funct Plant Biol 39:734–744

    Article  Google Scholar 

  54. Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6(11):1583–1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17(20):1784–1790

    Article  CAS  PubMed  Google Scholar 

  56. Yuan YB, Liu CL, Ju ZG, Wang YZ, Li Z, Zhu GL (1996) Salicylic acid inhibit ethylene biosynthesis in apple fruit by increasing the content of H2O2. Chin Sci Abstr 2:124

    Google Scholar 

  57. Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W (2012) Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLoS One 7(6):39650

    Article  Google Scholar 

  58. Matthewman CA, Kawashima CG, Húska D, Csorba T, Dalmay T, Kopriva S (2012) miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Lett 586(19):3242–3248

    Article  CAS  PubMed  Google Scholar 

  59. Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross-tolerance in plants. Physiol Plant 103(3):437–441

    Article  CAS  Google Scholar 

  60. Sanan-Mishra N, Kumar V, Sopory SK, Mukherjee SK (2009) Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genomics 282(5):463–474

    Article  CAS  PubMed  Google Scholar 

  61. Niu Q, Qian M, Liu G, Yang F, Teng Y (2013) A genome-wide identification and characterization of mircoRNAs and their targets in ‘Suli’pear (Pyrus pyrifolia white pear group). Planta 238(6):1095–1112

    Article  CAS  Google Scholar 

  62. Bolton MD (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant Microbe Interact 22(5):487–497

    Article  CAS  PubMed  Google Scholar 

  63. Pérez-Quintero ÁL, Quintero A, Urrego O, Vanegas P, López C (2012) Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biol 12(1):29

    Article  PubMed Central  PubMed  Google Scholar 

  64. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283(23):15932–15945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Borkow G, Gabbay J (2004) Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J 18(14):1728–1730

    CAS  PubMed  Google Scholar 

  66. Yuan M, Chu Z, Li X, Xu C, Wang S (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22(9):3164–3176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Roitsch T, Balibrea M, Hofmann M, Proels R, Sinha A (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54(382):513–524

    Article  CAS  PubMed  Google Scholar 

  68. Dijkstra L, Walker JR (1991) Enzymic browning in apricots (Prunus armeniaca). J Sci Food Agric 54(2):229–234

    Article  CAS  Google Scholar 

  69. Mayer A, Harel E (1968) A laccase-like enzyme in peaches. Phytochemistry 7(8):1253–1256

    Article  CAS  Google Scholar 

  70. Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T (2004) Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 122(4):419–428

    Article  CAS  Google Scholar 

  71. Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68(22):2722–2735

    Article  CAS  PubMed  Google Scholar 

  72. Roemmelt S, Treutter D, Speakman J, Rademacher W Effects of prohexadione-Ca on the flavonoid metabolism of apple with respect to plant resistance against fire blight. In: VIII international workshop on fire blight 489, 1998. pp 359–364

  73. Mayr U, Michalek S, Treutter D, Feucht W (1997) Phenolic compounds of apple and their relationship to scab resistance. J Phytopathol 145(2–3):69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Jiangsu Province Science Technology Independent Innovation Fund [CX(13)3006], the Jiangsu Province Science and Technology Support Program(BE2011415)and the Sanxin project of Jiangsu Province [SXGC(2013)046] for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Chun Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XY., Du, BB., Gao, ZH. et al. Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh.. Mol Biol Rep 41, 5273–5286 (2014). https://doi.org/10.1007/s11033-014-3399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3399-8

Keywords

Navigation