Skip to main content
Log in

Molecular characterization, expression profiles, and analysis of Qinchuan cattle SIRT1 gene association with meat quality and body measurement traits (Bos taurus)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Silent information regulator (SIRT1), was closely associated with senescence, metabolism, and apoptosis. The objective of this study was to investigate whether SIRT1 gene could be used as a candidate gene in the breeding process of Qinchuan cattle. Via sequencing technology conducted in 453 individuals of Qinchuan cattle, single nucleotide polymorphisms (G25764A, A25846G, and T25868C) with 5 haplotypes and 6 combined genotypes in 3′ untranslated region of SIRT1 gene were identified. In addition, three loci were significantly associated with some of the body measurements and meat quality traits in Qinchuan cattle (P < 0.05), and the H2H2 (GG–AA–CC) diplotypes had better performance than other combinations in Qinchuan cattle. These results suggest that the SIRT1 gene could be used in marker assisted selection to improve the production traits of Qinchuan cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS et al (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 26:968–976

    Article  CAS  PubMed  Google Scholar 

  2. Lee YS (2009) The role of genes in the current obesity epidemic. Ann Acad Med Singapore 38:45–47

    PubMed  Google Scholar 

  3. Walley AJ, Asher JE, Froguel P (2009) The genetic contribution to non-syndromic human obesity. Nat Rev Genet 10:431–442

    Article  CAS  PubMed  Google Scholar 

  4. Smith JS, Brachmann CB, Celic I, Kenna MA et al (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97:6658–6663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Imai SI, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD dependent histone deacetylase. Nature 403:795–800

    Article  CAS  PubMed  Google Scholar 

  6. Liang F, Kume S, Koya D (2009) SIRT1 and insulin resistance. Nat Rev Endocrinol 5:367–373

    Article  CAS  PubMed  Google Scholar 

  7. Wojcik M, MacMarcjanek K, Wozniak L (2009) A physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 9(3):386–394

    Article  CAS  PubMed  Google Scholar 

  8. North BJ, Verdin E (2004) SIRTuins: sir2-related NAD-dependent protein deacetylases. Genome Biol 5:224

    Article  PubMed Central  PubMed  Google Scholar 

  9. Motta MC, Divecha N, Lemieux M et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    Article  CAS  PubMed  Google Scholar 

  10. Fulco M, Schiltz RL, Iezzi S et al (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12:51–62

    Article  CAS  PubMed  Google Scholar 

  11. Luo J, Nikolaev AY, Imai S et al (2001) Negative control of p53 by Sir2a promotes cell survival under stress. Cell 107:137–148

    Article  CAS  PubMed  Google Scholar 

  12. Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  13. Picard F, Kurtev M, Chung N et al (2004) SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429:771–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Qiao L, Shao J (2006) SIRT1 regulates adiponectin gene expression through Foxo1-C/Enhancer-binding protein γ transcriptional complex. J Biol Chem 281:39915–39924

    Article  CAS  PubMed  Google Scholar 

  15. Bai L, Pang WJ, Yang YJ, Yang GS (2007) Modulation of SIRT1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 307:129–140

    Article  PubMed  Google Scholar 

  16. Backesjo CM, Li Y, Lindgren U, Haldosen LA (2009) Activation of SIRT1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs 189:93–97

    Article  PubMed  Google Scholar 

  17. Cohen K, Artsi H, Levin A, Abramowitz E et al (2011) SIRT1 Is a regulator of bone mass and a repressor of sost encoding for sclerostin, a bone formation inhibitor. Endocrinology 152(12):4514–4524

    Article  Google Scholar 

  18. Gilbert RP, Bailey DR, and Shannon (1993) NH linear body measurements of cattle before and after 20 years of selection for post weaning gain when fed two different diets. J Anim Sci 71: 1712–1720

  19. Nei M, Roychoudhury AK (1974) Sampling variance of heterozygosity and genetic distance. Genetics 76:379–390

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  CAS  PubMed  Google Scholar 

  21. Julie L, Kirstin E, Nick AS (2009) Real-Time PCR: Current Technology and Applications. Caister Academic Press, Norfolk

    Google Scholar 

  22. Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309

    Article  CAS  PubMed  Google Scholar 

  23. Li MX, Sun XM, Hua LS et al (2013) SIRT1 gene polymorphisms are associated with growth traits in Nanyang cattle. Mol Cell Probes 27:215–220

    Article  CAS  PubMed  Google Scholar 

  24. Li MX, Sun XM, Zhang LZ et al (2013) A novel c.-274C > G polymorphism in bovine SIRT1 gene contributes to diminished promoter activity and is associated with increased body size. Anim Genet 44:584–587

    Article  CAS  PubMed  Google Scholar 

  25. Liu YF, Zan LS, Zhao SP, Xin YP et al (2010) Molecular characterization, polymorphism of bovine ZBTB38 gene and association with body measurement traits in native Chinese cattle breeds. Mol Biol Rep 37:4041–4049

    Article  CAS  PubMed  Google Scholar 

  26. Dekkers JC (2004) Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 13:313–328

    Google Scholar 

  27. Camargo GM, Cardoso DF, Gil FM, Fonseca PD et al (2012) First polymorphisms in JY-1 gene in cattle (Bos taurus indicus) and their association with sexual precocity and growth traits. Mol Biol Rep 39(12):10105–10109

    Article  CAS  PubMed  Google Scholar 

  28. Alim MA, Fan YP, Wu XP, Xie Y et al (2012) Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population. Mol Biol Rep 39(9):8733–8740

    Article  CAS  PubMed  Google Scholar 

  29. Cinar MU, Kayan A, Uddin MJ, Jonas E et al (2012) Association and expression quantitative trait loci (e QTL) analysis of porcine AMBP, GC and PPP1R3B genes with meat quality traits. Mol Biol Rep 39(4):4809–4821

    Article  CAS  PubMed  Google Scholar 

  30. Sun C, Zhang F, Ge X et al (2007) SIRTl improves insulin sensitivity under insulin-resistant conditions by repressing PTPIB. Cell Metab 6:307–319

    Article  CAS  PubMed  Google Scholar 

  31. Kuningas M, Putters M, Westendorp RG, Slagboom PE et al (2007) SIRT1 Gene, Age-Related Diseases and Mortality. J Gerontol A 62:960–965

    Article  Google Scholar 

  32. Figarska SM, Vonk JM, Boezen HM (2013) SIRT1 polymorphism, long-term survival and glucose. PLoS One 8(3):1–6

    Article  Google Scholar 

  33. Suwa M, Nakano H, Radak Z et al (2008) Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator -1α protein expressions in rat skeletal muscle. Metabolism 57(7):986–998

    Article  CAS  PubMed  Google Scholar 

  34. Balestrieri ML, Rienzo M, Felice F et al (2008) High glucose downregulates endothelial progenitor cell number via SIRT1. Biochim Biophys Acta 1784(6):936–945

    Article  CAS  PubMed  Google Scholar 

  35. Bordone L, Motta MC, Picard F et al (2006) SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol 4(2):210–220

    Article  CAS  Google Scholar 

  36. Hozumi YG, Gallardo AG, Dávalos LG et al (2007) Bovine sirtuins: initial characterization and expression of Sirt1 and Sirt3 in liver, muscle, and adipose tissue. J Anim Sci 89(8):2529–2536

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Zan Linsen for providing the necessary materials used to accomplish this research work. The research was supported by the National “Five year” Science and Technology Support Project (#2011BAD28B04-03), the China National 863 Program (#2011AA100307), the GMO New Varieties Major Project (#2011ZX08007-002), the National Beef and Yak Industrial Technology System (#CARS-38), Chinese Beef Cattle Economically Important Traits Functional Genomics Studies Project (2013AA102505), Identification And Regulation of Qinchuan Cattle Meat Quality Traits Functional Gene Project (31272411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsen Zan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, L., Wang, H., Wei, S. et al. Molecular characterization, expression profiles, and analysis of Qinchuan cattle SIRT1 gene association with meat quality and body measurement traits (Bos taurus). Mol Biol Rep 41, 5237–5246 (2014). https://doi.org/10.1007/s11033-014-3393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3393-1

Keywords

Navigation