Skip to main content

Advertisement

Log in

Knockdown of sphingosine kinase 1 inhibits the migration and invasion of human rheumatoid arthritis fibroblast-like synoviocytes by down-regulating the PI3K/AKT activation and MMP-2/9 production in vitro

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To investigate the potential regulation of sphingosine kinase 1 (SPHK1) on the migration, invasion, and matrix metalloproteinase (MMP) expression in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). RA-FLS were transfected control siRNA or SPHK1 siRNA. The migration and invasion of unmanipulated control, control siRNA or SPHK1 siRNA- transfected RA-FLS in vitro were measured by the transwell system. The relative levels of SPHK1, PI3K, and AKT as well as AKT phosphorylation in RA-FLS were determined by Western blot. The levels of MMP-2/9 secreted by RA-FLS were detected by ELISA. Knockdown of SPHK1 significantly inhibited the spontaneous migration and invasion of RA-FLS, accompanied by significantly reduced levels of PI3K expression and AKT phosphorylation. Similarly, treatment with LY294002, an inhibitor of the PI3K/AKT pathway, inhibited the migration and invasion of RA-FLS. Knockdown of SPHK1 and treatment with the inhibitor synergistically inhibited the migration and invasion of RA-FLS, by further reducing the levels of PI3K expression and AKT phosphorylation. In addition, knockdown of SPHK1 or treatment with LY294002 inhibited the secretion of MMP-2 and MMP-9, and both synergistically reduced the production of MMP-2 and MMP-9 in RA-FLS in vitro. Knockdown of SPHK1 expression inhibits the PI3K/AKT activation, MMP-2 and MMP-9 expression, and human RA-FLS migration and invasion in vitro. Potentially, SPHK1 may be a novel therapeutic target for RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361. doi:10.1038/nature01661

    Article  CAS  PubMed  Google Scholar 

  2. Szekanecz Z, Gaspar L, Koch AE (2005) Angiogenesis in rheumatoid arthritis. Front Biosci 10:1739–1753

    Article  CAS  PubMed  Google Scholar 

  3. Miossec P (2013) Rheumatoid arthritis: still a chronic disease. Lancet 381(9870):884–886. doi:10.1016/s0140-6736(12)62192-8

    Article  PubMed  Google Scholar 

  4. Juarez M, Filer A, Buckley CD (2012) Fibroblasts as therapeutic targets in rheumatoid arthritis and cancer. Swiss Med Wkly 142:w13529. doi:10.4414/smw.2012.13529

    PubMed  Google Scholar 

  5. Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255. doi:10.1111/j.0105-2896.2009.00859.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, Gay S (1996) Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 149(5):1607–1615

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Muller-Ladner U, Pap T, Gay RE, Neidhart M, Gay S (2005) Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol 1(2):102–110. doi:10.1038/ncprheum0047

    Article  PubMed  Google Scholar 

  8. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatol (Oxford, England) 45(6):669–675. doi:10.1093/rheumatology/kel065

    Article  CAS  Google Scholar 

  9. Roivainen A, Jalava J, Pirila L, Yli-Jama T, Tiusanen H, Toivanen P (1997) H-ras oncogene point mutations in arthritic synovium. Arthr Rheum 40(9):1636–1643. doi:10.1002/1529-0131(199709)40:9<1636:AID-ART13>3.0.CO;2-D

    Article  CAS  Google Scholar 

  10. Ahn JK, Kim H, Lee J, Bae EK, Cha HS, Koh EM (2008) Phenotypic characterization and invasive properties of synovial fluid-derived adherent cells in rheumatoid arthritis. Inflammation 31(6):365–371. doi:10.1007/s10753-008-9087-x

    Article  CAS  PubMed  Google Scholar 

  11. Sun Y, Cheung HS p53, proto-oncogene and rheumatoid arthritis. Semin Arthr Rheum 31(5):299–310. doi:10.1053/sarh.2002.31550

  12. Lefevre S, Knedla A, Tennie C, Kampmann A, Wunrau C, Dinser R, Korb A, Schnaker EM, Tarner IH, Robbins PD, Evans CH, Sturz H, Steinmeyer J, Gay S, Scholmerich J, Pap T, Muller-Ladner U, Neumann E (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med 15(12):1414–1420. doi:10.1038/nm.2050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi:10.1161/01.RES.0000070112.80711.3D

    Article  CAS  PubMed  Google Scholar 

  14. Choo EJ, Rhee YH, Jeong SJ, Lee HJ, Kim HS, Ko HS, Kim JH, Kwon TR, Jung JH, Kim JH, Lee HJ, Lee EO, Kim DK, Chen CY, Kim SH (2011) Anethole exerts antimetatstaic activity via inhibition of matrix metalloproteinase 2/9 and AKT/mitogen-activated kinase/nuclear factor kappa B signaling pathways. Biol Pharm Bull 34(1):41–46. doi:10.1248/bpb.34.41

    Article  CAS  PubMed  Google Scholar 

  15. Chen N-H, Liu J-W, Zhong J–J (2008) Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J Pharm Sci 108(2):212–216. doi:10.1254/jphs.SC0080019

    Article  CAS  Google Scholar 

  16. Xiao Y, Liang L, Pan Y, Lian F, Li L, Lin H, Fu D, Fan J, Yang X, Sun L, Xu H (2013) Inhibitory effects of simvastatin on migration and invasion of rheumatoid fibroblast-like synoviocytes by preventing geranylgeranylation of RhoA. Rheumatol Int 33(2):389–399. doi:10.1007/s00296-012-2383-7

    Article  CAS  PubMed  Google Scholar 

  17. Fu D, Yang Y, Xiao Y, Lin H, Ye Y, Zhan Z, Liang L, Yang X, Sun L, Xu H (2012) Role of p21-activated kinase 1 in regulating the migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Rheumatol (Oxford, England) 51(7):1170–1180. doi:10.1093/rheumatology/kes031

    Article  CAS  Google Scholar 

  18. Murphy G, Nagase H (2008) Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4:128–135. doi:10.1038/ncprheum0727

    Article  CAS  PubMed  Google Scholar 

  19. Tchetverikov I, Lard LR, DeGroot J, Verzijl N, TeKoppele JM, Breedveld FC, Huizinga TWJ, Hanemaaijer R (2003) Matrix metalloproteinases-3,-8,-9 as markers of disease activity and joint damage progression in early rheumatoid arthritis. Ann Rheum Dis 62(11):1094–1099. doi:10.1136/ard.62.11.1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Burrage PS, Mix KS, Brinckerhoff CE (2006) Brinckerhoff, Matrix metalloproteinases: role in arthritis. Front Biosci 11(1):529–543. doi:10.2741/1817

    Article  CAS  PubMed  Google Scholar 

  21. Ahn JK, Hwang JW, Bae EK, Lee J, Jeon CH, Koh EM, Cha HS (2012) The role of Raf kinase inhibitor protein in rheumatoid fibroblast-like synoviocytes invasiveness and cytokine and matrix metalloproteinase expression. Inflammation 35(2):474–483. doi:10.1007/s10753-011-9336-2

    Article  CAS  PubMed  Google Scholar 

  22. Kaneko K, Miyabe Y, Takayasu A, Fukuda S, Miyabe C, Ebisawa M, Yokoyama W, Watanabe K, Imai T, Muramoto K, Terashima Y, Sugihara T, Matsushima K, Miyasaka N, Nanki T (2011) Chemerin activates fibroblast-like synoviocytes in patients with rheumatoid arthritis. Arthr Res Ther 13(5):R158. doi:10.1186/ar3475

    Article  CAS  Google Scholar 

  23. Laragione T, Gulko PS (2012) Liver X receptor regulates rheumatoid arthritis fibroblast-like synoviocyte invasiveness, matrix metalloproteinase 2 activation, interleukin-6 and CXCL10. Mol Med (Cambridge, Mass) 18:1009–1017. doi:10.2119/molmed.2012.00173

    CAS  Google Scholar 

  24. Tolboom TCA, Pieterman E, Hvander Laan W, Toes REM, Huidekoper AL, Nelissen RGHH, Breedveld FC, J Huizinga TW (2002) Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann Rheum Dis 61(11):975–980. doi:10.1136/ard.61.11.975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ou Y, Li W, Li X, Lin Z, Li M (2011) Sinomenine reduces invasion and migration ability in fibroblast-like synoviocytes cells co-cultured with activated human monocytic THP-1 by inhibiting the expression of MMP-2, MMP-9, CD147. Rheumatol Int 31(11):1479–1485. doi:10.1007/s00296-010-1506-2

    Article  CAS  PubMed  Google Scholar 

  26. Guoqing L, Yu Z, Yayun Q, Hua Z, Shiyu G, Masataka S, Tadashi H, Yanqing L (2013) Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol 53(3):227–236. doi:10.1016/j.molimm.2012.08.018

    Article  Google Scholar 

  27. Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D’Andrea RJ, Vadas MA (2000) An oncogenic role of sphingosine kinase. Curr Biol (CB) 10(23):1527–1530

    Article  CAS  Google Scholar 

  28. Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9(8):662–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Pyne NJ, Tonelli F, Lim KG, Long JS, Edwards J, Pyne S (2012) Sphingosine 1-phosphate signalling in cancer. Biochem Soc Trans 40(1):94–100. doi:10.1042/bst20110602

    Article  CAS  PubMed  Google Scholar 

  30. Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585(2–3):193–201

    Article  CAS  PubMed  Google Scholar 

  31. Cuvillier O (2008) Downregulating sphingosine kinase-1 for cancer therapy. Expert Opin Ther Targets 12(8):1009–1020. doi:10.1517/14728222.12.8.1009

    Article  CAS  PubMed  Google Scholar 

  32. Pyne S, Lee SC, Long J, Pyne NJ (2009) Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal 21(1):14–21. doi:10.1016/j.cellsig.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  33. Liu SQ, Huang JA, Qin MB, Su YJ, Lai MY, Jiang HX, Tang GD (2012) Sphingosine kinase 1 enhances colon cancer cell proliferation and invasion by upregulating the production of MMP-2/9 and uPA via MAPK pathways. Int J Colorectal Dis 27(12):1569–1578. doi:10.1007/s00384-012-1510-y

    Article  PubMed  Google Scholar 

  34. Chen CH, Lai JM, Chou TY, Chen CY, Su LJ, Lee YC, Cheng TS, Hong YR, Chou CK, Whang-Peng J, Wu YC, Huang CY (2009) VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway. PLoS ONE 4(4):e5052. doi:10.1371/journal.pone.0005052

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bao M, Chen Z, Xu Y, Zhao Y, Zha R, Huang S, Liu L, Chen T, Li J, Tu H, He X (2012) Sphingosine kinase 1 promotes tumour cell migration and invasion via the S1P/EDG1 axis in hepatocellular carcinoma. Liver Int 32(2):331–338. doi:10.1111/j.1478-3231.2011.02666.x

    Article  CAS  PubMed  Google Scholar 

  36. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, Zhao R, Milstien S, Zhou H, Spiegel S, Takabe K (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72(3):726–735. doi:10.1158/0008-5472.can-11-2167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Baker DA, Obeid LD, Gilkeson GS (2011) Impact of sphingosine kinase on inflammatory pathway in fibroblast-like synoviocytes. J Inflamm Allergy Drug Targets (8):464–471. doi:10.2174/187152811798104863

  38. Cho C-S et al (2000) CD40 engagement on synovial fibroblast up-regulates production of vascular endothelial growth factor. J Immunol 164(10):5055–5061

    Article  CAS  PubMed  Google Scholar 

  39. Jarman KE, Moretti PA, Zebol JR, Pitson SM (2010) Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 285(1):483–492. doi:10.1074/jbc.M109.068395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shirai K, Kaneshiro T, Wada M, Furuya H, Bielawski J, Hannun YA, Obeid LM, Ogretmen B, Kawamori T (2011) A role of sphingosine kinase 1 in head and neck carcinogenesis. Cancer Prev Res (Philadelphia, Pa) 4(3):454–462. doi:10.1158/1940-6207.capr-10-0299

    Article  CAS  Google Scholar 

  41. Cuvillier O, Ader I, Bouquerel P, Brizuela L, Malavaud B, Mazerolles C, Rischmann P (2010) Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol 3(2):53–65

    Article  CAS  PubMed  Google Scholar 

  42. Guan H, Song L, Cai J, Huang Y, Wu J, Yuan J, Li J, Li M (2011) Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim pathway and contributes to apoptosis resistance in glioma cells. PLoS ONE 6(5):e19946. doi:10.1371/journal.pone.0019946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Radeff-Huang J, Seasholtz TM, Chang JW, Smith JM, Walsh CT, Brown JH (2007) Tumor necrosis factor-alpha-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression. J Biol Chem 282(2):863–870. doi:10.1074/jbc.M601698200

    Article  CAS  PubMed  Google Scholar 

  44. Limaye V, Li X, Hahn C, Xia P, Berndt MC, Vadas MA, Gamble JR (2005) Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3 K/Akt and regulation of Bcl-2 family members. Blood 105(8):3169–3177. doi:10.1182/blood-2004-02-0452

    Article  CAS  PubMed  Google Scholar 

  45. Xu W, Huang JJ, Cheung PC (2012) Extract of Pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS ONE 7(3):e34406. doi:10.1371/journal.pone.0034406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yuan Q, Cai S, Zhang X, Liu Z, Li Z, Luo X, Xiong C, Wang J, Hu J, Ruan J (2012) A new protoapigenone analog RY10-4 induces apoptosis and suppresses invasion through the PI3K/Akt pathway in human breast cancer. Cancer Lett 324(2):210–220. doi:10.1016/j.canlet.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  47. Nowicki TS, Zhao H, Darzynkiewicz Z, Moscatello A, Shin E, Schantz S, Tiwari RK, Geliebter J (2011) Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells. Cell Cycle (Georgetown, Tex) 10(1):100–107

    Article  PubMed Central  CAS  Google Scholar 

  48. Chen NH, Liu JW, Zhong JJ (2008) Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J Pharmacol Sci 108(2):212–216

    Article  CAS  PubMed  Google Scholar 

  49. Amorino GP, Hoover RL (1998) Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am J Pathol 152(1):199–207

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Seo KW, Lee SJ, Kim YH, Bae JU, Park SY, Bae SS, Kim CD (2013) Mechanical stretch increases MMP-2 production in vascular smooth muscle cells via activation of PDGFR-beta/Akt signaling pathway. PLoS ONE 8(8):e70437. doi:10.1371/journal.pone.0070437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Seo KW, Lee SJ, Kim CE, Yun MR, Park HM, Yun JW, Bae SS, Kim CD (2010) Participation of 5-lipoxygenase-derived LTB(4) in 4-hydroxynonenal-enhanced MMP-2 production in vascular smooth muscle cells. Atherosclerosis 208(1):56–61. doi:10.1016/j.atherosclerosis.2009.06.012

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Yang Z, Song W, Zhou L, Li Q, Tao K, Zhou J, Wang X, Zheng Z, You N, Dou K, Li H (2013) Overexpression of Bmi-1 contributes to the invasion and metastasis of hepatocellular carcinoma by increasing the expression of matrix metalloproteinase (MMP)2, MMP-9 and vascular endothelial growth factor via the PTEN/PI3K/Akt pathway. Int J Oncol 43(3):793–802. doi:10.3892/ijo.2013.1992

    CAS  PubMed  Google Scholar 

  53. Lin CC, Lee IT, Chi PL, Hsieh HL, Cheng SE, Hsiao LD, Liu CJ, Yang CM (2013) c-Src/Jak2/PDGFR/PKCdelta-dependent MMP-9 induction is required for thrombin-stimulated rat brain astrocytes migration. Mol Neurobiol. doi:10.1007/s12035-013-8547-y

Download references

Acknowledgments

This work was sponsored by a grant from the Education Project of Liaoning Province (No. L2012312). The Authors thank Medjaden Bioscience Limited for editing and proofreading this manuscript.

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Yang, P., Zhou, D. et al. Knockdown of sphingosine kinase 1 inhibits the migration and invasion of human rheumatoid arthritis fibroblast-like synoviocytes by down-regulating the PI3K/AKT activation and MMP-2/9 production in vitro. Mol Biol Rep 41, 5157–5165 (2014). https://doi.org/10.1007/s11033-014-3382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3382-4

Keywords

Navigation