Skip to main content

Advertisement

Log in

Investigation of key microRNAs associated with hepatocellular carcinoma using small RNA-seq data

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To identify key microRNAs (miRNAs) associated with hepatocellular carcinoma (HCC) using small RNA-seq data. Small RNA-seq data for two HCC samples and two normal samples were downloaded from NCBI Gene Expression Omnibus. MiRNAs were identified through database search. Differentially expressed miRNAs were screened out with t test and their target genes were retrieved. Functional enrichment analysis was performed to uncover their biological functions. Regulatory networks and core metabolic networks were also constructed to present the global patterns. In addition, new miRNAs and their target genes were predicted. A total of 59 differentially expressed miRNAs were obtained, 12 up-regulated and 47 down-regulated. A total of 3,306 target genes were retrieved for eight miRNAs. Pathway enrichment analysis for the target genes showed that “pathways in cancer” and “MAPK signaling pathway” were significantly over-represented. Functional enrichment analysis found that “biological regulation” and “macromolecule modification” were significantly related to the target genes. Two regulatory networks were constructed for up- and down-regulated differentially expressed miRNAs with information from Ingenuity Pathway Analysis database. Two metabolic networks were also established based upon “pathways in cancer” and “MAPK signaling pathway”, consisting of miRNAs, target genes, compounds and others genes. Moreover, a number of new miRNAs and relevant target genes were predicted. Our study discloses a number of miRNAs as well as genes which may be involved in the development of HCC and these findings are beneficial in guiding future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Ahmed F, Perz JF, Kwong S, Jamison PM, Friedman C, Bell BP (2008) National trends and disparities in the incidence of hepatocellular carcinoma, 1998-2003. Prev Chronic Dis 5:A74

    PubMed Central  PubMed  Google Scholar 

  3. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN (2010) The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51:1972–1978

    Article  PubMed  Google Scholar 

  4. Arbuthnot P, Kew M (2001) Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 82:77–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH, Melgar-Lesmes P (2009) Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol 51:725–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP (2007) Prognostic molecular markers in hepatocellular carcinoma: a systematic review. Eur J Cancer 43:979

    Article  CAS  PubMed  Google Scholar 

  7. Yoo BK, Emdad L, Su Z-Z, Villanueva A, Chiang DY, Mukhopadhyay ND, Mills AS, Waxman S, Fisher RA, Llovet JM (2009) Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. J Clin Investig 119:465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, Fang CY, Lu HJ, Yang PY, Tang ZY (2005) Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 5:4581–4588

    Article  CAS  PubMed  Google Scholar 

  9. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX, Tang ZY, Wang XW (2008) EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68:1451–1461

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394

    Article  CAS  PubMed  Google Scholar 

  11. Kota J, Chivukula RR, O’donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, Chang T-C, Vivekanandan P, Torbenson M, Clark KR (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, Zhang Q, Wang C, Zhuang SM, Zheng L, Liang A, Tao W, Cao X (2011) Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19:232–243

    Article  CAS  PubMed  Google Scholar 

  14. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  15. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  16. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  17. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, Yang HK, Kim VN (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37:1672–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gentleman R (2005) Gostats: Tools for manipulating go and microarrays. R package version 1

  21. Qibin L, Jiang W (2008) MIREAP: microRNA discovery by deep sequencing

  22. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166–1176

    CAS  PubMed  Google Scholar 

  23. Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, Jiang Z, Zhang Z, Yang R, Li Z, Tang A, Li X, Ye J, Guan Z, Gui Y, Cai Z (2011) MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6:e18286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, Li J, Wang X, Song L (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS ONE 5:e15797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    Article  CAS  PubMed  Google Scholar 

  26. Plaisier CL, Pan M, Baliga NS (2012) A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res 22:2302–2314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Buffa FM, Camps C, Winchester L, Snell CE, Gee HE, Sheldon H, Taylor M, Harris AL, Ragoussis J (2011) microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 71:5635–5645

    Article  CAS  PubMed  Google Scholar 

  28. Liu H-S, Ma Y–Y, Xiao H-S (2012) The diagnostic value of serum microRNAs including miR-129-3p, miR-767-3p and miR-877* for colorectal cancer. TUMOR 32:42–48

    Google Scholar 

  29. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  CAS  PubMed  Google Scholar 

  30. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275:44

    Article  CAS  PubMed  Google Scholar 

  31. Tryndyak VP, Ross SA, Beland FA, Pogribny IP (2009) Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 48:479–487

    Article  CAS  PubMed  Google Scholar 

  32. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci 105:3903–3908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906

    Article  CAS  PubMed  Google Scholar 

  34. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  CAS  PubMed  Google Scholar 

  35. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123:372–379

    Article  CAS  PubMed  Google Scholar 

  37. Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta 1802:396–405

    Article  CAS  PubMed  Google Scholar 

  38. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Sci Signal 286:1358

    CAS  Google Scholar 

  39. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Vial E, Sahai E, Marshall CJ (2003) ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4:67–79

    Article  CAS  PubMed  Google Scholar 

  41. Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Kudo Y, Goto T, Yoshida H, Koike K (2012) A miRNA machinery component DDX20 controls NF-κB via microRNA-140 function. Biochem Biophys Res Commun 420:564–569

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR, Cartron M-A, Van Rhee F, Nair B, Waheed S (2010) High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci 107:7904–7909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Cheng N, Li Y, Han ZG (2013) Argonaute2 promotes tumor metastasis by way of up-regulating focal adhesion kinase expression in hepatocellular carcinoma. Hepatology 57:1906–1918

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partly by the Science and Technology Program of Liaoning Province (2010225008); the Ph.D. Start-up Foundation of Liaoning Province (20081048); and the Science and Technology Program of Shenyang (F10-205-1-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Jie Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, LJ., Lin, Y., Jin, Y. et al. Investigation of key microRNAs associated with hepatocellular carcinoma using small RNA-seq data. Mol Biol Rep 41, 4341–4349 (2014). https://doi.org/10.1007/s11033-014-3305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3305-4

Keywords

Navigation