Skip to main content
Log in

Associations of polymorphisms in GHRL, GHSR, and IGF1R genes with feed efficiency in chickens

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The ghrelin (GHRL), ghrelin receptor (GHSR), and insulin-like growth factor 1 receptor (IGF1R) genes have crucial effects on body weight (BW), body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) in many species. However, few studies on associations of GHRL, GHSR, and IGF1R with BWG, FI, and FCR have been reported in chickens. In this study, 16 SNPs in GHRL, GHSR, and IGF1R genes were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The objective of this study was to examine the associations of GHRL, GHSR, and IGF1R genes polymorphisms with BW at 49 days (BW49) and 70 days (BW70) of age, BWG, FI, and FCR in the interval in two yellow meat-type populations with a total of 724 birds. The results showed that rs15675067 of GHRL was significantly associated with BW70, BWG, and FCR (P < 0.05). For GHSR, rs16675844 had significant effects on FI and FCR (P < 0.01), and that rs14678932 showed significant association with BWG and FI (P < 0.05). Rs14011780 of IGF1R was strongly associated with BW49, BW70, and FCR (P < 0.05). Furthermore, haplotypes based on three SNPs of rs14986828, rs15675067, and rs15675065 in GHRL were significantly associated with BW70 and FCR (P < 0.05). Meanwhile, a three-SNP haplotype comprising rs14011783, rs14011780, and rs14011776 in IGF1R showed significant effects on BW49, BW70, and FCR (P < 0.05). Therefore, it was concluded that the identified SNPs and analyzed haplotypes in this study might be useful for broiler breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma P, Bottje W, Okimoto R (2008) Polymorphisms in uncoupling protein, melanocortin 3 receptor, melanocortin 4 receptor, and pro-opiomelanocortin genes and association with production traits in a commercial broiler line. Poult Sci 87:2073–2086

    Article  CAS  PubMed  Google Scholar 

  2. Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    Article  CAS  PubMed  Google Scholar 

  3. Hayashida T, Murakami K, Mogi K, Nishihara M, Nakazato M, Mondal MS, Horii Y, Kojima M, Kangawa K, Murakami N (2001) Ghrelin in domestic animals: distribution in stomach and its possible role. Domest Anim Endocrinol 21:17–24

    Article  CAS  PubMed  Google Scholar 

  4. Pazos Y, Casanueva FF, Camina JP (2008) Basic aspects of ghrelin action. Vitam Horm 77:89–119

    Article  CAS  PubMed  Google Scholar 

  5. Moe HH, Shimogiri T, Kamihiraguma W, Isobe H, Kawabe K, Okamoto S, Minvielle F, Maeda Y (2007) Analysis of polymorphisms in the insulin-like growth factor 1 receptor (IGF1R) gene from Japanese quail selected for body weight. Anim Genet 38:659–661

    Article  CAS  PubMed  Google Scholar 

  6. Fang M, Nie Q, Luo C, Zhang D, Zhang X (2007) An 8 bp indel in exon 1 of Ghrelin gene associated with chicken growth. Domest Anim Endocrinol 32:216–225

    Article  CAS  PubMed  Google Scholar 

  7. Ukkola O, Ravussin E, Jacobson P, Snyder EE, Chagnon M, Sjostrom L, Bouchard C (2001) Mutations in the preproghrelin/ghrelin gene associated with obesity in humans. J Clin Endocrinol Metab 86:3996–3999

    Article  CAS  PubMed  Google Scholar 

  8. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992

    Article  CAS  PubMed  Google Scholar 

  9. Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M (2001) Minireview: ghrelin and the regulation of energy balance-a hypothalamic perspective. Endocrinology 142:4163–4169

    CAS  PubMed  Google Scholar 

  10. Kaiya H, Van Der Geyten S, Kojima M, Hosoda H, Kitajima Y, Matsumoto M, Geelissen S, Darras VM, Kangawa K (2002) Chicken ghrelin: purification, cDNA cloning, and biological activity. Endocrinology 143:3454–3463

    Article  CAS  PubMed  Google Scholar 

  11. Nie Q, Zeng H, Lei M, Ishag NA, Fang M, Sun B, Yang G, Zhang X (2004) Genomic organisation of the chicken ghrelin gene and its single nucleotide polymorphisms detected by denaturing high-performance liquid chromatography. Br Poult Sci 45:611–618

    Article  CAS  PubMed  Google Scholar 

  12. Ando T, Ichimaru Y, Konjiki F, Shoji M, Komaki G (2007) Variations in the preproghrelin gene correlate with higher body mass index, fat mass, and body dissatisfaction in young Japanese women. Am J Clin Nutr 86:25–32

    CAS  PubMed  Google Scholar 

  13. Shuto Y, Shibasaki T, Otagiri A, Kuriyama H, Ohata H, Tamura H, Kamegai J, Sugihara H, Oikawa S, Wakabayashi I (2002) Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest 109:1429–1436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Davenport AP, Bonner TI, Foord SM, Harmar AJ, Neubig RR, Pin JP, Spedding M, Kojima M, Kangawa K (2005) International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev 57:541–546

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Wang P, Zheng H, Smith RG (2004) Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A 101:4679–4684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ueda H, Ikegami H, Kawaguchi Y, Fujisawa T, Yamato E, Shibata M, Ogihara T (1999) Genetic analysis of late-onset type 2 diabetes in a mouse model of human complex trait. Diabetes 48:1168–1174

    Article  CAS  PubMed  Google Scholar 

  17. Zhang B, Chen H, Guo Y, Zhang L, Zhao M, Lan X, Zhang C, Pan C, Hu S, Wang J, Lei C (2009) Associations of polymorphism within the GHSR gene with growth traits in Nanyang cattle. Mol Biol Rep 36:2259–2263

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka M, Miyazaki T, Yamamoto I, Nakai N, Ohta Y, Tsushima N, Wakita M, Shimada K (2003) Molecular characterization of chicken growth hormone secretagogue receptor gene. Gen Comp Endocrinol 134:198–202

    Article  CAS  PubMed  Google Scholar 

  19. Kajimoto Y, Rotwein P (1991) Structure of the chicken insulin-like growth factor I gene reveals conserved promoter elements. J Biol Chem 266:9724–9731

    CAS  PubMed  Google Scholar 

  20. Butler AA, LeRoith D (2001) Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology 142:1685–1688

    Article  CAS  PubMed  Google Scholar 

  21. Kopecny M, Stratil A, Bartenschlager H, Peelman LJ, Van Poucke M, Geldermann H (2002) Linkage and radiation hybrid mapping of the porcine IGF1R and TPM2 genes to chromosome 1. Anim Genet 33:398–400

    Article  CAS  PubMed  Google Scholar 

  22. Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE (2005) Molecular interactions of the IGF system. Cytokine Growth Factor Rev 16:421–439

    Article  CAS  PubMed  Google Scholar 

  23. Kawashima Y, Kanzaki S, Yang F, Kinoshita T, Hanaki K, Nagaishi J, Ohtsuka Y, Hisatome I, Ninomoya H, Nanba E, Fukushima T, Takahashi S (2005) Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation. J Clin Endocrinol Metab 90:4679–4687

    Article  CAS  PubMed  Google Scholar 

  24. Louvi A, Accili D, Efstratiadis A (1997) Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 189:33–48

    Article  CAS  PubMed  Google Scholar 

  25. Abbott AM, Bueno R, Pedrini MT, Murray JM, Smith RJ (1992) Insulin-like growth factor I receptor gene structure. J Biol Chem 267:10759–10763

    CAS  PubMed  Google Scholar 

  26. Yang YW, Robbins AR, Nissley SP, Rechler MM (1991) The chick embryo fibroblast cation-independent mannose 6-phosphate receptor is functional and immunologically related to the mammalian insulin-like growth factor-II (IGF-II)/man 6-P receptor but does not bind IGF-II. Endocrinology 128:1177–1189

    Article  CAS  PubMed  Google Scholar 

  27. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  28. Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309

    Article  CAS  PubMed  Google Scholar 

  29. Grunau C, Buard J, Brun ME, De Sario A (2006) Mapping of the juxtacentromeric heterochromatin-euchromatin frontier of human chromosome 21. Genome Res 16:1198–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  CAS  PubMed  Google Scholar 

  31. Miyasaka K, Hosoya H, Sekime A, Ohta M, Amono H, Matsushita S, Suzuki K, Higuchi S, Funakoshi A (2006) Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population. J Neural Transm 113:1279–1285

    Article  CAS  PubMed  Google Scholar 

  32. Fang M, Nie Q, Luo C, Zhang D, Zhang X (2010) Associations of GHSR gene polymorphisms with chicken growth and carcass traits. Mol Biol Rep 37:423–428

    Article  CAS  PubMed  Google Scholar 

  33. Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T, Rubin R, Efstratiadis A, Baserga R (1994) Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 14:3604–3612

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Lei M, Peng X, Zhou M, Luo C, Nie Q, Zhang X (2008) Polymorphisms of the IGF1R gene and their genetic effects on chicken early growth and carcass traits. BMC Genet 9:70

    Article  PubMed Central  PubMed  Google Scholar 

  35. Leal Ade C, Canton AP, Montenegro LR, Coutinho DC, Arnhold IJ, Jorge AA (2011) Mutations in insulin-like growth factor receptor 1 gene (IGF1R) resulting in intrauterine and postnatal growth retardation. Arq Bras Endocrinol Metabol 55:541–549

    Article  PubMed  Google Scholar 

  36. Zhou H, Mitchell AD, McMurtry JP, Ashwell CM, Lamont SJ (2005) Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult Sci 84:212–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Drs. Dexiang Zhang and Congliang Ji at Guangdong Wens Nanfang Poultry Breeding Co., Ltd., China for providing experimental chickens. This study was supported in part by grants from Changjiang Scholars and Innovative Research in University of China (IRT0945 and IRT1191), the Chinese Universities Scientific Fund (2012QJ096), and National Natural Science Foundation of China (31201794 and 31172203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Yang.

Additional information

Sihua Jin and Sirui Chen contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Chen, S., Li, H. et al. Associations of polymorphisms in GHRL, GHSR, and IGF1R genes with feed efficiency in chickens. Mol Biol Rep 41, 3973–3979 (2014). https://doi.org/10.1007/s11033-014-3265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3265-8

Keywords

Navigation