Skip to main content
Log in

Molecular cloning and characterization of enhanced disease susceptibility 1 (EDS1) from Gossypium barbadense

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Arabidopsis enhanced disease susceptibility 1 (EDS1) plays an important role in plant defense against biotrophic and necrotrophic pathogens. The necrotrophic pathogen Verticillium dahliae infection of Gossypium barbadense could lead to Verticillium wilt which seriously reduces the cotton production. Here, we cloned and characterized a G. barbadense homolog of EDS1, designated as GbEDS1. The full-length cDNA of the GbEDS1 gene was obtained by the technique of rapid-amplification of cDNA ends. The open reading frame of the GbEDS1 gene was 1,647 bp long and encoded a protein of 548 amino acids residues. Comparison of the cDNA and genomic DNA sequence of GbEDS1 indicated that this gene contained a single intron and two exons. Like other EDS1s, GbEDS1 contained a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Subcellular localization assay revealed that GbEDS1–green fluorescence protein fusion protein was localized in both cytosol and nucleus. Interestingly, the transcript levels of GbEDS1 were dramatically increased in response to pathogen V. dahliae infection. To investigate the role of GbEDS1 in plant resistance against V. dahliae, a conserved fragment derived from GbEDS1 was used to knockdown the endogenous EDS1 in Nicotiana benthamiana by heterologous virus-induced gene silencing. Our data showed that silencing of NbEDS1 resulted in increased susceptibility to V. dahliae infection in N. benthamiana, suggesting a possible involvement of the novelly isolated GbEDS1 in the regulation of plant defense against V. dahliae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  2. Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L (2011) Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J 66:293–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gao X, Li F, Li M, Kianinejad AS, Dever JK, Wheeler TA, Li Z, He P, Shan L (2013) Cotton GhBAK1 mediates Verticillium wilt resistance and cell death. J Integr Plant Biol 55:586–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Garas NA, Wilhem S, Sagen JE (1986) Relationship of cultivar resistance to distribution of Verticillium dahliae in inoculated cotton plants and to growth of single condia on excised stem segments. Phytopathology 76:1005–1010

    Article  Google Scholar 

  6. Bejarano-Alcázar J, Blanco-López MA, Melero-Vara JM, Jiménez-Díaz RM (1997) The influence of Verticillium wilt epidemics on cotton yield in southern Spain. Plant Pathol 46:168–178

    Article  Google Scholar 

  7. Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Fan X, Ren Y, Shen D, Liu L, Dou D, Chang Y (2012) Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS ONE 7:e51091. doi:10.1371/journal.pone.0051091

  8. Daayf F, Nicole M, Geiger JP (1995) Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol 101:69–79

    Article  Google Scholar 

  9. Cai Y, Xiaohong H, Mo J, Sun Q, Yang J, Liu J (2009) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol 8:7363–7372

    CAS  Google Scholar 

  10. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  CAS  PubMed  Google Scholar 

  11. Yadeta KA, Hanemian M, Smit P, Hiemstra JA, Pereira A, Marco Y, Thomma BPHJ (2011) The Arabidopsis thaliana DNA-binding protein AHL19 mediates Verticillium wilt resistance. Mol Plant Microbe Interact 24:1582–1591

    Article  CAS  PubMed  Google Scholar 

  12. Parker JE, Feys BJ, van der Biezen EA, Noël L, Aarts N, Austin MJ, Botella MA, Frost LN, Daniels MJ, Jones JD (2000) Unravelling R gene-mediated disease resistance pathways in Arabidopsis. Mol Plant Pathol 1:17–24

    Article  CAS  PubMed  Google Scholar 

  13. Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

    Article  CAS  PubMed  Google Scholar 

  14. Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA 96:3292–3297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rustérucci C, Aviv DH, Holt BF III, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    Article  PubMed Central  PubMed  Google Scholar 

  17. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  18. Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569–579

    Article  CAS  PubMed  Google Scholar 

  19. Hu G, deHart AK, Li Y, Ustach C, Handley V, Navarre R, Hwang CF, Aegerter BJ, Williamson VM, Baker B (2005) EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J 42:376–391

    Article  CAS  PubMed  Google Scholar 

  20. Bhattacharjee S, Halane MK, Kim SH, Gassmann W (2011) Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334:1405–1408

    Article  CAS  PubMed  Google Scholar 

  21. Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE (2011) Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334:1401–1404

    Article  CAS  PubMed  Google Scholar 

  22. Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ochsenbein C, Przybyla D, Danon A, Landgraf F, Gobel C, Imboden A, Feussner I, Apel K (2006) The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. Plant J 47:445–456

    Article  CAS  PubMed  Google Scholar 

  24. Gao F, Shu X, Ali MB, Howard S, Li N, Winterhagen P, Qiu W, Gassmann W (2010) A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant. Planta 231:1037–1047

    Article  CAS  PubMed  Google Scholar 

  25. Collings DA (2013) Subcellular localization of transiently expressed fluorescent fusion proteins. Methods Mol Biol 1069:227–258

    Article  CAS  PubMed  Google Scholar 

  26. Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA 95:13079–13084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhu S, Jeong RD, Venugopal SC, Lapchyk L, Navarre D, Kachroo A, Kachroo P (2011) SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog 7:e1002318. doi:10.1371/journal.ppat.1002318

  28. El Oirdi M, Bouarab K (2007) Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. N Phytol 175:131–139

    Article  Google Scholar 

  29. Zheng SJ, Zhang PJ, van Loon JJ, Dicke M (2011) Silencing defense pathways in Arabidopsis by heterologous gene sequences from Brassica oleracea enhances the performance of a specialist and a generalist herbivorous insect. J Chem Ecol 37:818–829

    Article  CAS  PubMed  Google Scholar 

  30. Hosseini Tafreshi SA, Shariati M, Mofid MR, Khayam Nekui M, Esmaeili A (2012) Heterologous virus-induced gene silencing as a promising approach in plant functional genomics. Mol Biol Rep 39:2169–2178

    Article  PubMed  Google Scholar 

  31. Purkayastha A, Dasgupta I (2009) Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47:967–976

    Article  CAS  PubMed  Google Scholar 

  32. Velasquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 10:1292. doi:10.3791/1292

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Key Project for Breeding Genetic Modified Organisms (2013ZX08005-004) and the National Natural Science Foundation of China (31372004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Cheng.

Additional information

Xiaofeng Su and Xiliang Qi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Qi, X. & Cheng, H. Molecular cloning and characterization of enhanced disease susceptibility 1 (EDS1) from Gossypium barbadense . Mol Biol Rep 41, 3821–3828 (2014). https://doi.org/10.1007/s11033-014-3248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3248-9

Keywords

Navigation