Skip to main content
Log in

Genetic association study of adaptor protein complex 4 with cerebral palsy in a Han Chinese population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Adaptor protein complex 4 (AP-4) plays a key role in vesicle formation, trafficking, and sorting processes that are critical for brain development and function. AP-4 consists of four subunits encoded by the AP4E1, AP4B1, AP4M1, and AP4S1 genes. A number of studies have pointed to the involvement of AP-4–mediated vesicular trafficking pathways in the etiology of cerebral palsy (CP), the most notable of which are the causative mutations that have recently been identified in each of the AP-4 genes in different CP families. We postulated, therefore, that variations in AP-4 genes might influence an indivual’s susceptibility to CP. In the present study, 16 SNPs were genotyped among 517 CP patients and 502 healthy controls from the Han Chinese population. We systematically analyzed the association of the AP4E1, AP4B1, AP4M1, and AP4S1 genes with CP on the basis of clinical characteristics. No significant associations were found between these variants and the overall risk of CP. Subgroup analysis showed that rs1217401 of AP4B1 was significantly associated with CP as a sequela of hypoxic-ischemic encephalopathy (HIE) (CP + HIE) (allele: p = 0.042151; genotype: p = 4.46 × 10−6). Our results indicate that the 16 variants studied in the genes of the four subunits of AP-4 have no detectable effects on the overall susceptibility to CP, but AP4B1 appears to be a susceptibility gene for CP + HIE in the Han Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, Jacobsson B, Damiano D (2005) Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 47(8):571–576

    Article  PubMed  Google Scholar 

  2. Novak I, Hines M, Goldsmith S, Barclay R (2012) Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics 130(5):e1285–e1312

    Article  PubMed  Google Scholar 

  3. Kuban KC, Leviton A (1994) Cerebral palsy. N Engl J Med 330(3):188–195

    Article  PubMed  CAS  Google Scholar 

  4. Liu J, Li Z, Lin Q, Zhao P, Zhao F, Hong S, Li S (2000) Cerebral palsy and multiple births in China. Int J Epidemiol 29(2):292–299

    Article  PubMed  CAS  Google Scholar 

  5. Schaefer GB (2008) Genetics considerations in cerebral palsy. Semin Pediatr Neurol 15(1):21–26

    Article  PubMed  Google Scholar 

  6. Nelson KB (2008) Causative factors in cerebral palsy. Clin Obstet Gynecol 51(4):749–762

    Article  PubMed  Google Scholar 

  7. Moreno-De-Luca A, Ledbetter DH, Martin CL (2012) Genetic insights into the causes and classification of the cerebral palsies. Lancet Neurol 11(3):283–292

    Article  PubMed  CAS  Google Scholar 

  8. Garne E, Dolk H, Krageloh-Mann I, Ravn SH, Cans C, Grp SC (2008) Cerebral palsy and congenital malformations. Eur J Paediatr Neurol 12(2):82–88

    Article  PubMed  Google Scholar 

  9. Blair E, Al Asedy F, Badawi N, Bower C (2007) Is cerebral palsy associated with birth defects other than cerebral defects? Dev Med Child Neurol 49(4):252–258

    Article  PubMed  Google Scholar 

  10. Hemminki K, Li X, Sundquist K, Sundquist J (2007) High familial risks for cerebral palsy implicate partial heritable aetiology. Paediatr Perinat Epidemiol 21(3):235–241

    Article  PubMed  Google Scholar 

  11. Gustavson KH, Hagberg B, Sanner G (1969) Identical syndromes of cerebral palsy in the same family. Acta Paediatr Scand 58(4):330–340

    Article  PubMed  CAS  Google Scholar 

  12. Costeff H (2004) Estimated frequency of genetic and nongenetic causes of congenital idiopathic cerebral palsy in west Sweden. Ann Hum Genet 68:515–520

    Article  PubMed  CAS  Google Scholar 

  13. McHale DP, Jackson AP, Campbell Levene MI, Corry P, Woods CG, Lench NJ, Mueller RF, Markham AF (2000) A gene for ataxic cerebral palsy maps to chromosome 9p12-q12. Eur J Hum Genet 8(4):267–272

    Article  PubMed  CAS  Google Scholar 

  14. Abou Jamra R, Philippe O, Raas-Rothschild A, Eck SH, Graf E, Buchert R, Borck G, Ekici A, Brockschmidt FF, Nothen MM, Munnich A, Strom TM, Reis A, Colleaux L (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88(6):788–795

    Article  PubMed  CAS  Google Scholar 

  15. Yap CC, Murate M, Kishigami S, Muto Y, Kishida H, Hashikawa T, Yano R (2003) Adaptor protein complex-4 (AP-4) is expressed in the central nervous system neurons and interacts with glutamate receptor delta2. Mol Cell Neurosci 24(2):283–295

    Article  PubMed  CAS  Google Scholar 

  16. Matsuda S, Miura E, Matsuda K, Kakegawa W, Kohda K, Watanabe M, Yuzaki M (2008) Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 57(5):730–745

    Article  PubMed  CAS  Google Scholar 

  17. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81(2):245–252

    Article  PubMed  CAS  Google Scholar 

  18. Kurihara H, Hashimoto K, Kano M, Takayama C, Sakimura K, Mishina M, Inoue Y, Watanabe M (1997) Impaired parallel fiber --> Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor delta2 subunit. J Neurosci 17(24):9613–9623

    PubMed  CAS  Google Scholar 

  19. Horton AC, Ehlers MD (2003) Neuronal polarity and trafficking. Neuron 40(2):277–295

    Article  PubMed  CAS  Google Scholar 

  20. Metzler M, Li B, Gan L, Georgiou J, Gutekunst CA, Wang Y, Torre E, Devon RS, Oh R, Legendre-Guillemin V, Rich M, Alvarez C, Gertsenstein M, McPherson PS, Nagy A, Wang YT, Roder JC, Raymond LA, Hayden MR (2003) Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO J 22(13):3254–3266

    Article  PubMed  CAS  Google Scholar 

  21. Moreno-De-Luca A, Helmers SL, Mao H, Burns TG, Melton AM, Schmidt KR, Fernhoff PM, Ledbetter DH, Martin CL (2011) Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet 48(2):141–144

    Article  PubMed  CAS  Google Scholar 

  22. Verkerk AJ, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, Lequin MH, Dudink J, Govaert P, van Zwol AL, Hirst J, Wessels MW, Catsman-Berrevoets C, Verheijen FW, de Graaff E, de Coo IF, Kros JM, Willemsen R, Willems PJ, van der Spek PJ, Mancini GM (2009) Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 85(1):40–52

    Article  PubMed  CAS  Google Scholar 

  23. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Puttmann L, Vahid LN, Jensen C, Moheb LA, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi SG, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi MJ, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss AW, Tzschach A, Kahrizi K, Ropers HH (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478(7367):57–63

    Article  PubMed  CAS  Google Scholar 

  24. Bauer P, Leshinsky-Silver E, Blumkin L, Schlipf N, Schroder C, Schicks J, Lev D, Riess O, Lerman-Sagie T, Schols L (2012) Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47). Neurogenetics 13(1):73–76

    Article  PubMed  CAS  Google Scholar 

  25. Cans C (2000) Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol 42:816–824

    Article  Google Scholar 

  26. Zhu C, Kang W, Xu F, Cheng X, Zhang Z, Jia L, Ji L, Guo X, Xiong H, Simbruner G, Blomgren K, Wang X (2009) Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 124(2):e218–e226

    Article  PubMed  Google Scholar 

  27. Ruis KA, Lehmann CU, Northington FJ, Lin DD, Graham EM (2009) Neonatal brain imaging and the identification of metabolic acidemia and hypoxic-ischemic encephalopathy. J Matern Fetal Neonatal Med 22(10):823–828

    Article  PubMed  Google Scholar 

  28. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  29. Himmelmann K (2013) Epidemiology of cerebral palsy. Handbook of clinical neurology 111:163–167

    Article  PubMed  Google Scholar 

  30. O’Callaghan ME, MacLennan AH, Haan EA, Dekker G (2009) The genomic basis of cerebral palsy: a HuGE systematic literature review. Hum Genet 126:149–172

    Article  PubMed  Google Scholar 

  31. Nielsen LF, Schendel D, Grove J, Hvidtjorn D, Jacobsson B, Josiassen T, Vestergaard M, Uldall P, Thorsen P (2008) Asphyxia-related risk factors and their timing in spastic cerebral palsy. BJOG 115(12):1518–1528

    Article  PubMed  CAS  Google Scholar 

  32. Bundey S, Griffiths MI (1977) Recurrence Risks in Families of Children with Symmetrical Spasticity. Dev Med Child Neurol 19(2):179–191

    Article  PubMed  CAS  Google Scholar 

  33. Hagberg H, Thornberg E, Blennow M, Kjellmer I, Lagercrantz H, Thiringer K, Hamberger A, Sandberg M (1993) Excitatory amino-acids in the cerebrospinal-fluid of asphyxiated infants—relationship to hypoxic-ischemic encephalopathy. Acta Paediatr 82(11):925–929

    Article  PubMed  CAS  Google Scholar 

  34. Pu YL, Li QF, Zeng CM, Gao J, Qi J, Luo DX, Mahankali S, Fox PT, Gao JH (2000) Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. Am J Neuroradiol 21(1):203–212

    PubMed  CAS  Google Scholar 

  35. Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15(3):234–240

    Article  PubMed  CAS  Google Scholar 

  36. Wood TL, Loladze V, Altieri S, Gangoli N, Levison SW, Brywe KG, Mallard C, Hagberg H (2007) Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage. Dev Neurosci 29(4–5):302–310

    Article  PubMed  CAS  Google Scholar 

  37. Nakanishi N, Tu S, Shin Y, Cui J, Kurokawa T, Zhang D, Chen HS, Tong G, Lipton SA (2009) Neuroprotection by the NR3A subunit of the NMDA receptor. J Neurosci 29(16):5260–5265

    Article  PubMed  CAS  Google Scholar 

  38. Fuchs SA, Peeters-Scholte CMPCD, de Barse MMJ, Roeleveld MW, Klomp LWJ, Berger R, de Koning TJ (2012) Increased concentrations of both NMDA receptor co-agonists d-serine and glycine in global ischemia: a potential novel treatment target for perinatal asphyxia. Amino Acids 43(1):355–363

    Article  PubMed  CAS  Google Scholar 

  39. Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15(3):234–240

    Article  PubMed  CAS  Google Scholar 

  40. Northington FJ, Chavez-Valdez R, Martin LJ (2011) Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 69(5):743–758

    Article  PubMed  CAS  Google Scholar 

  41. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22(10):1302–1306

    Article  PubMed  CAS  Google Scholar 

  42. Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75(3):353–362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all the participants in this study. This work was supported by a Grant from National Natural Science Foundation of China (No: 90919049, 30971582, 31271152, 81261120400, 61240031), the 973 Program (2011CB504501), the Shanghai Municipal Commission of Science and Technology Program (09DJ1400601), the Health Department of Henan Province (201201002), the Swedish Research Council (VR) and Swedish governmental grants to scientists working in health care (ALF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghe Xing or Changlian Zhu.

Additional information

H. Wang and Y. Xu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Xu, Y., Chen, M. et al. Genetic association study of adaptor protein complex 4 with cerebral palsy in a Han Chinese population. Mol Biol Rep 40, 6459–6467 (2013). https://doi.org/10.1007/s11033-013-2761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2761-6

Keywords

Navigation