Skip to main content

Advertisement

Log in

Association of CDKN1B gene polymorphisms with susceptibility to breast cancer: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A number of case–control studies have been conducted to investigate the association of CDKN1B gene polymorphisms with breast cancer. However, these studies reported conflicting results. The aim of our study was to quantitatively summarize the association of CDKN1B gene polymorphisms with breast cancer. Systemic searches of the PubMed, Excerpta Medica Database, and Chinese Biomedical Literature Database databases were performed, with the last report up to Oct 2012. Odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of the association. Seven studies including 6,822 cases and 7,186 controls were involved in this meta-analysis, which was performed for two CDKN1B gene polymorphisms (rs2066827 and rs34330). Significant association was found for rs34330 polymorphism (T versus C: OR = 1.10, 95 % CI = 1.03–1.18, P = 0.003; CT + TT versus CC: OR = 1.38, 95 % CI = 0.98–1.93, P = 0.07; TT versus CC + CT: OR = 1.06, 95 % CI = 0.93–1.21, P = 0.38; TT versus CC: OR = 1.23, 95 % CI = 1.04–1.45, P = 0.02; CT versus CC: OR = 1.42, 95 % CI = 0.97–2.09, P = 0.07), but not for rs2066827 polymorphism (G versus T: OR = 0.99, 95 % CI = 0.91–1.08, P = 0.84; TG + GG versus TT: OR = 0.98, 95 % CI = 0.89–1.08, P = 0.69; GG versus TT + TG: OR = 1.04, 95 % CI = 0.83–1.30, P = 0.75; GG versus TT: OR = 1.03, 95 % CI = 0.82–1.30, P = 0.77; TG versus TT: OR = 0.97, 95 % CI = 0.88–1.08, P = 0.58). This meta-analysis suggests that breast cancer may be associated with CDKN1B gene rs34330 polymorphism, but not rs2066827 polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Pharoah PD, Dunning AM, Ponder BA, Easton DF (2004) Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer 4:850–860

    Article  PubMed  CAS  Google Scholar 

  3. Park MT, Lee SJ (2003) Cell cycle and cancer. J Biochem Mol Biol 36:60–65

    Article  PubMed  CAS  Google Scholar 

  4. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  PubMed  CAS  Google Scholar 

  5. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  6. Alkarain A, Slingerland J (2004) Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 6:13–21

    Article  PubMed  CAS  Google Scholar 

  7. Schöndorf T, Eisele L, Göhring UJ, Valter MM, Warm M, Mallmann P, Becker M, Fechteler R, Weisshaar MP, Hoopmann M (2004) The V109G polymorphism of the p27 gene CDKN1B indicates a worse outcome in node-negative breast cancer patients. Tumour Biol 25:306–312

    Article  PubMed  Google Scholar 

  8. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massagué J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78:59–66

    Article  PubMed  CAS  Google Scholar 

  9. Tigli H, Buyru N, Dalay N (2005) Molecular analysis of the p27/kip1 gene in breast cancer. Mol Diagn 9:17–21

    Article  PubMed  Google Scholar 

  10. Canbay E, Eraltan IY, Cercel A, Isbir T, Gazioglu E, Aydogan F, Cacina C, Cengiz A, Ferahman M, Zengin E, Unal H (2010) CCND1 and CDKN1B polymorphisms and risk of breast cancer. Anticancer Res 30:3093–3098

    PubMed  CAS  Google Scholar 

  11. Yu JC, Ding SL, Chang CH, Kuo SH, Chen ST, Hsu GC, Hsu HM, Hou MF, Jung LY, Cheng CW, Wu PE, Shen CY (2009) Genetic susceptibility to the development and progression of breast cancer associated with polymorphism of cell cycle and ubiquitin ligase genes. Carcinogenesis 30:1562–1570

    Article  PubMed  CAS  Google Scholar 

  12. Spurdle AB, Deans AJ, Duffy D, Goldgar DE, Chen X, Beesley J, kConFaB, Easton DF, Antoniou AC, Peock S, Cook M, EMBRACE Study Collaborators, Nathanson KL, Domchek SM, MacArthur GA, Chenevix-Trench G (2009) No evidence that CDKN1B (p27) polymorphisms modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 115:307–313

    Article  PubMed  CAS  Google Scholar 

  13. Driver KE, Song H, Lesueur F, Ahmed S, Barbosa-Morais NL, Tyrer JP, Ponder BA, Easton DF, Pharoah PD, Dunning AM, Studies in Epidemiology and Risks of Cancer Heredity (SEARCH) Team (2008) Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 29:333–341

    Article  PubMed  CAS  Google Scholar 

  14. Figueiredo JC, Knight JA, Cho S, Savas S, Onay UV, Briollais L, Goodwin PJ, McLaughlin JR, Andrulis IL, Ozcelik H (2007) Polymorphisms cMyc-N11S and p27-V109G and breast cancer risk and prognosis. BMC Cancer 7:99

    Article  PubMed  Google Scholar 

  15. Naidu R, Har YC, Taib NA (2007) P27 V109G polymorphism is associated with lymph node metastases but not with increased risk of breast cancer. J Exp Clin Cancer Res 26:133–140

    PubMed  CAS  Google Scholar 

  16. Ma H, Jin G, Hu Z, Zhai X, Chen W, Wang S, Wang X, Qin J, Gao J, Liu J, Wang X, Wei Q, Shen H (2006) Variant genotypes of CDKN1A and CDKN1B are associated with an increased risk of breast cancer in Chinese women. Int J Cancer 119:2173–2178

    Article  PubMed  CAS  Google Scholar 

  17. Onay VU, Briollais L, Knight JA, Shi E, Wang Y, Wells S, Li H, Rajendram I, Andrulis IL, Ozcelik H (2006) SNP–SNP interactions in breast cancer susceptibility. BMC Cancer 6:114

    Article  PubMed  Google Scholar 

  18. Ferrando AA, Balbín M, Pendás AM, Vizoso F, Velasco G, López-Otín C (1996) Mutational analysis of the human cyclin-dependent kinase inhibitor p27kip1 in primary breast carcinomas. Hum Genet 97:91–94

    Article  PubMed  CAS  Google Scholar 

  19. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634

    Article  CAS  Google Scholar 

  20. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  21. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  22. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  23. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  24. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  25. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182

    Article  PubMed  CAS  Google Scholar 

  26. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    Article  PubMed  CAS  Google Scholar 

  27. Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183:10–17

    Article  PubMed  CAS  Google Scholar 

  28. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM (1997) Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3:227–230

    Article  PubMed  CAS  Google Scholar 

  29. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM (1997) Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3:222–225

    Article  PubMed  CAS  Google Scholar 

  30. Wang W, Spitz MR, Yang H, Lu C, Stewart DJ, Wu X (2007) Genetic variants in cell cycle control pathway confer susceptibility to lung cancer. Clin Cancer Res 13:5974–5981

    Article  PubMed  CAS  Google Scholar 

  31. Landa I, Montero-Conde C, Malanga D, De Gisi S, Pita G, Leandro-García LJ, Inglada-Pérez L, Letón R, De Marco C, Rodríguez-Antona C, Viglietto G, Robledo M (2010) Allelic variant at −79 (C > T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels. Endocr Relat Cancer 17:317–328

    Article  PubMed  CAS  Google Scholar 

  32. Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 36:D820–D824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the people who give the help for this study.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changle Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, H., Li, H., Ge, W. et al. Association of CDKN1B gene polymorphisms with susceptibility to breast cancer: a meta-analysis. Mol Biol Rep 40, 6371–6377 (2013). https://doi.org/10.1007/s11033-013-2751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2751-8

Keywords

Navigation