Skip to main content

Advertisement

Log in

Systematic investigation of interactions between papain and MPA-capped CdTe quantum dots

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fluorescent quantum dots (QDs) have been widely applied in biological and biomedical areas, but relatively little is known about the interaction of QDs with some natural enzymes. Herein, the interactions between 3-mercaptopropionic acid-capped CdTe QDs (MPA-QDs) and papain were systematically investigated by UV–Vis absorption spectra, fluorescence spectra and circular dichroism (CD) spectra under the physiological conditions. The fluorescence spectra results indicated that MPA-QDs quenched the fluorescence intensity of papain. The modified Stern–Volmer quenching constant K a at different temperatures and the corresponding thermodynamic parameters ΔH, ΔG and ΔS were also calculated. The binding of MPA-QDs and papain is a result of the formation of QDs-papain complex and the electrostatic interactions play a major role in stabilizing the complex. The CD technique was further used to analyze the conformational changes of papain induced by MPA-QDs and the results indicated that the biological activity of papain was affected by MPA-QDs dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  2. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  PubMed  CAS  Google Scholar 

  3. Bang J, Park J, Velu R, Yoon E, Lee K, Cho S, Cha S, Chae G, Joo T, Kim S (2012) Photoswitchable quantum dots by controlling the photoinduced electron transfers. Chem Commun 48:9174–9176

    Article  CAS  Google Scholar 

  4. Lightcap IV, Kamat PV (2012) Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J Am Chem Soc 134:7109–7116

    Article  PubMed  CAS  Google Scholar 

  5. Akshath US, Vinayaka AC, Thakur MS (2012) Quantum dots as nano plug-in’s for efficient NADH resonance energy routing. Biosens Bioelectron 38:411–415

    Article  PubMed  CAS  Google Scholar 

  6. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41:4067–4085

    Article  PubMed  CAS  Google Scholar 

  7. Huang S, Xiao Q, He ZK, Liu Y, Tinnefeld P, Su XR, Peng XN (2008) A high sensitive and specific QDs FRET bioprobe for MNase. Chem Commun 45:5990–5992

    Article  Google Scholar 

  8. Liu BY, Zeng F, Wu GF, Wu SZ (2012) Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors. Analyst 137:3717–3724

    Article  PubMed  CAS  Google Scholar 

  9. Xiao Q, Zhou B, Huang S, Tian FF, Guan HL, Ge YS, Liu XR, He ZK, Liu Y (2009) Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements. Nanotechnology 20:325101

    Article  PubMed  Google Scholar 

  10. Huang S, Xiao Q, He ZK, Liu Y (2009) Resonance light scattering method for the determination of lysozyme using CdSe quantum dots as probe. Chem J Chin U 30:1951–1955

    CAS  Google Scholar 

  11. Huang S, Xiao Q, Li R, Guan HL, Liu J, Liu XR, He ZK, Liu Y (2009) A simple and sensitive method for l-cysteine detection based on the fluorescence intensity increment of quantum dots. Anal Chim Acta 645:73–78

    Article  PubMed  CAS  Google Scholar 

  12. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  13. Lei Y, Xiao Q, Huang S, Xu WS, Zhang Z, He ZK, Liu Y, Deng FJ (2011) Impact of CdSe/ZnS quantum dots on the development of Zebrafish embryos. J Nanopart Res 13:6895–6906

    Article  CAS  Google Scholar 

  14. Han XL, Lai L, Tian FF, Jiang FL, Xiao Q, Li Y, Yu QLY, Li DW, Wang J, Zhang QM, Zhu BF, Li R, Liu Y (2012) Toxicity of CdTe quantum dots on yeast Saccharomyces cerevisiae. Small 8:2680–2689

    Article  PubMed  CAS  Google Scholar 

  15. Xiao Q, Huang S, Su W, Li PY, Liu Y (2013) Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry. Thermochim Acta 552:98–105

    Article  CAS  Google Scholar 

  16. Xiao Q, Huang S, Su W, Li PY, Liang ZC, Ou JZ, Ma JQ, Liu Y (2012) Evaluate the potential environmental toxicity of quantum dots on ciliated protozoa by microcalorimetry. Thermochim Acta 547:62–69

    Article  CAS  Google Scholar 

  17. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles: effects of particle size and hydrophobicity. Nano Lett 7:914–920

    Article  PubMed  CAS  Google Scholar 

  18. Zhan HJ, Zhou PJ, Ding L, He ZY, Ma R (2012) Multi-spectroscopic techniques to evaluate the toxicity of alloyed CdSeS quantum dots. J Lumin 132:2769–2774

    Article  CAS  Google Scholar 

  19. Xu ZQ, Lai L, Li DW, Li R, Xiang C, Jiang FL, Sun SF, Liu Y (2012) Toxicity of CdTe QDs with different sizes targeted to HSA investigated by two electrochemical methods. Mol Biol Rep 40:1009–1019

    Article  PubMed  CAS  Google Scholar 

  20. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  21. Ghali M (2010) Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots. J Lumin 130:1254–1257

    Article  CAS  Google Scholar 

  22. Wang QS, Zhang XL, Zhou XL, Fang TT, Liu PF, Liu P, Min XM, Li X (2012) Interaction of different thiol-capped CdTe quantum dots with bovine serum albumin. J Lumin 132:1695–1700

    Article  CAS  Google Scholar 

  23. Wang QS, Liu PF, Zhou XL, Zhang XL, Fang TT, Liu P, Min XM, Li X (2012) Thermodynamic and conformational investigation of the influence of CdTe QDs size on the toxic interaction with BSA. J Photochem Photobiol A 230:23–30

    Article  CAS  Google Scholar 

  24. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta 1487:1020–1027

    Google Scholar 

  25. Xiao Q, Huang S, Su W, Li PY, Ma JQ, Luo FP, Chen J, Liu Y (2013) Systematically investigations of conformation and thermodynamics of HSA adsorbed to different sizes of CdTe quantum dots. Colloids Surf B 102:76–82

    Article  CAS  Google Scholar 

  26. Xiao Q, Huang S, Ma JQ, Su W, Li PY, Cui JG, Liu Y (2012) Systematically investigation of interactions between BSA and different charge-capped CdSe/ZnS quantum dots. J Photochem Photobiol A 249:53–60

    Article  CAS  Google Scholar 

  27. Yao JW, Lin CJ, Tao T, Lin F (2013) The effect of various concentrations of papain on the properties and hydrolytic rates of β-casein layers. Colloids Surf B 101:272–279

    Article  CAS  Google Scholar 

  28. Li J, Li MJ, Tang JL, Li XZ, Zhang HQ, Zhang YH (2008) Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles. Spectrochim Acta A 70:514–518

    Article  Google Scholar 

  29. Kim CJ, Lee DI, Lee CH, Ahn IS (2012) A dityrosine-based substrate for a protease assay: application for the selective assessment of papain and chymopapain activity. Anal Chim Acta 723:101–107

    Article  PubMed  CAS  Google Scholar 

  30. Huang S, Xiao Q, Su W, Li PY, Ma JQ, He ZK (2013) Simple and sensitive determination of papain by resonance light-scattering with CdSe quantum dots. Colloids Surf B 102:146–151

    Article  CAS  Google Scholar 

  31. Xiao Q, Huang S, Su W, Chan WH, Liu Y (2012) Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-l-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase. Nanotechnology 23:495717

    Article  PubMed  Google Scholar 

  32. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  33. Xiao Q, Huang S, Liu Y, Tian FF, Zhu JC (2009) Thermodynamics, conformation and active sites of the binding of Zn–Nd hetero-bimetallic Schiff base to bovine serum albumin. J Fluoresc 19:317–326

    Article  PubMed  CAS  Google Scholar 

  34. Hu YJ, Chen CH, Zhou S, Bai AM, Ou-Yang Y (2012) The specific binding of chlorogenic acid to human serum albumin. Mol Biol Rep 39:2781–2787

    Article  PubMed  CAS  Google Scholar 

  35. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Press, New York

    Book  Google Scholar 

  36. Lehrer SS (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  37. Hu YJ, Yue HL, Li XL, Zhang SS, Tang E, Zhang LP (2012) Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J Photochem Photobiol B 112:16–22

    Article  PubMed  CAS  Google Scholar 

  38. Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010) Binding of berberine to bovine serum albumin: spectroscopic approach. Mol Biol Rep 37:3827–3832

    Article  PubMed  CAS  Google Scholar 

  39. Timaseff SN (1972) Thermodynamics of protein interactions. In: Peeters H (ed) Proteins of biological fluids. Pergamon Press, Oxford

    Google Scholar 

  40. Paul BK, Guchhait N (2011) A spectral deciphering of the binding interaction of an intramolecular charge transfer fluorescence probe with a cationic protein: thermodynamic analysis of the binding phenomenon combined with blind docking study. Photochem Photobiol Sci 10:980–991

    Article  PubMed  CAS  Google Scholar 

  41. Yang MM, Yang P, Xi XL (1997) Investigation of the binding between fluorescent dye probe and protein. Chin Sci Bull 42:1276–1279

    Google Scholar 

  42. Hu YJ, Wang Y, Ou-Yang Y, Zhou J, Liu Y (2010) Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. J Lumin 130:1394–1399

    Article  CAS  Google Scholar 

  43. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    PubMed  CAS  Google Scholar 

  44. Fang Y, Tong GC, Means GE (2006) Structural changes accompanying human serum albumin’s binding of fatty acids are concerted. Biochim Biophys Acta 1764:285–291

    Article  PubMed  CAS  Google Scholar 

  45. Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–208

    CAS  Google Scholar 

  46. Patra D, Mishra AK (2002) Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends Anal Chem 21:787–798

    Article  CAS  Google Scholar 

  47. Zhang YZ, Zhang J, Li FF, Xiang X, Ren AQ, Liu Y (2011) Studies on the interaction between benzophenone and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38:2445–2453

    Article  PubMed  CAS  Google Scholar 

  48. Sun HH, Zhang J, Zhang YZ, Yang LY, Yuan LL, Liu Y (2012) Interaction of human serum albumin with 10-hydroxycamptothecin: spectroscopic and molecular modeling studies. Mol Biol Rep 39:5115–5123

    Article  PubMed  CAS  Google Scholar 

  49. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  PubMed  CAS  Google Scholar 

  50. Liu JQ, Tian JN, Tian X, Hu ZD, Chen XG (2004) Interaction of isofraxidin with human serum albumin. Bioorg Med Chem 12:469–474

    Article  PubMed  CAS  Google Scholar 

  51. Sahoo B, Sahu SK, Bhattacharya D, Dhara D, Pramanik P (2013) A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites. Colloids Surf B 101:280–289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21203035, 21261005), the National Science Fund for Distinguished Young Scholars of China (Grant No. 21225313), Scientific Research Fund of Guangxi Provincial Education Department (2013YB138) and Guangxi Natural Science Foundation (2013GXNSFCA019005, 2013GXNSFBA019029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Huang or Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Qiu, H., Huang, S. et al. Systematic investigation of interactions between papain and MPA-capped CdTe quantum dots. Mol Biol Rep 40, 5781–5789 (2013). https://doi.org/10.1007/s11033-013-2681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2681-5

Keywords

Navigation