Skip to main content
Log in

SynCAM, a novel putative tumor suppressor, suppresses growth and invasiveness of glioblastoma

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

SynCAM, also named by TSLC1, SgIGSF and IGSF4, was identified as a neural tissue-specific immunoglobulin-like cell–cell adhesion molecule. However, the role of SynCAM in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in glioblastoma. SynCAM was silenced in 72 % (5/7) glioblastoma cell lines. A significant downregulation was also detected in paired glioblastoma tumors compared with adjacent non-cancerous tissues. In contrast, SynCAM was readily expressed in various normal adult brain tissues. Ectopic expression of SynCAM in the silenced cancer cell line T98G significantly reduced colony formation and cell proliferation, induced cell cycle arrests and repressed cell invasive ability. Nude mice were subcutaneously injected into the flank with T98G cells and treated with normal saline, pcDNA3.1 (vector) or pcDNA3.1-SynCAM, respectively. Treatment with pcDNA3.1-SynCAM retarded growth in the xenografts, which contributed to a 58 % decrease in tumor volume compared to controls. In conclusion, our results suggest that SynCAM suppressions growth of glioblastoma and may serve as a novel functional tumor-suppressor gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2(8):616–626

    Article  PubMed  CAS  Google Scholar 

  2. Maher EA, Furnari FB, Bachoo RM et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333

    Article  PubMed  CAS  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  4. Walbert T, Gilbert MR (2009) The role of chemotherapy in the treatment of patients with brain metastases from solid tumors. Int J Clin Oncol 14(4):299–306

    Article  PubMed  CAS  Google Scholar 

  5. Gomyo H, Arai Y, Tanigami A et al (1999) A 2-Mb sequence-ready contig map and a novel immunoglobulin superfamily gene IGSF4 in the LOH region of chromosome 11q23.2. Genomics 62(2):139–146

    Article  PubMed  CAS  Google Scholar 

  6. Stagi M, Fogel AI, Biederer T (2010) SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. Proc Natl Acad Sci USA 107(16):7568–7573

    Article  PubMed  CAS  Google Scholar 

  7. Maurel P, Einheber S, Galinska J et al (2007) Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J Cell Biol 178(5):861–874

    Article  PubMed  CAS  Google Scholar 

  8. Ohta Y, Itoh K, Yaoi T et al (2005) Spatiotemporal patterns of expression of IGSF4 in developing mouse nervous system. Dev Brain Res 156(1):23–31

    Article  CAS  Google Scholar 

  9. Fukuhara H, Kuramochi M et al (2001) Isolation of the TSLL1 and TSLL2 genes, members of the tumor suppressor TSLC1 gene family encoding transmembrane proteins. Oncogene 20(38):5401–5407

    Article  PubMed  CAS  Google Scholar 

  10. Du H, Li W, Wang Y et al (2011) Celecoxib induces cell apoptosis coupled with up-regulation of the expression of VEGF by a mechanism involving ER stress in human colorectal cancer cells. Oncol Rep 26(2):495–502

    PubMed  CAS  Google Scholar 

  11. Wakayama Y, Inoue M, Kojima H et al (2001) Localization of sarcoglycan, neuronal nitric oxide synthase, beta-dystroglycan, and dystrophin molecules in normal skeletal myofiber: triple immunogold labeling electron microscopy. Microsc Res Tech 55(3):154–163

    Article  PubMed  CAS  Google Scholar 

  12. Biederer T, Sara Y, Mozhayeva M et al (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297(5586):1525–1531

    Article  PubMed  CAS  Google Scholar 

  13. Kuramochi M, Fukuhara H, Nobukuni T et al (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27(4):427–430

    Article  PubMed  CAS  Google Scholar 

  14. Fukuhara H, Kuramochi M, Fukami T et al (2002) Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn Cancer Sci 93(6):605–609

    Article  CAS  Google Scholar 

  15. Honda T, Tamura G, Waki T et al (2002) Hypermethylation of the TSLC1 gene promoter in primay gastric cancers and gastric cancer cell lines. Jpn J Cancer Res 93(8):857–860

    Article  PubMed  CAS  Google Scholar 

  16. Igarashi T, Tobe T, Kuramochi H et al (2001) Serum immunosuppressive acidic protein as a potent prognostic factor for patients with metastatic renal cell carcinoma. Jpn J Clin Oncol 31(1):13–17

    Article  PubMed  CAS  Google Scholar 

  17. Nakahata S, Saito Y, Marutsuka K et al (2012) Clinical significance of CADM1/TSLC1/IgSF4 expression in adult T-cell leukemia/lymphoma. Leukemia 26(6):1238–1246

    Article  PubMed  CAS  Google Scholar 

  18. Kikuchi S, Iwai M, Sakurai-Yageta M et al (2012) Expression of a splicing variant of the CADM1 specific to small cell lung cancer. Cancer Sci 103(6):1051–1057

    Article  PubMed  CAS  Google Scholar 

  19. Lyckman AW, Horng S, Leamey CA et al (2008) Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation. Proc Natl Acad Sci USA 105(27):9409–9414

    Article  PubMed  CAS  Google Scholar 

  20. Watabe K, Ito A, Koma YI et al (2003) IGSF4: a new intercellular adhesion molecule that is called by three names, TSLC1, SgIGSF and SynCAM, by virtue of its diverse function. Histol Histopathol 18(4):1321–1329

    PubMed  CAS  Google Scholar 

  21. Shimizu K, Itsuzaki Y, Onishi M et al (2006) Reduced expression of the Tslc1 gene and its aberrant DNA methylation in rat lung tumors. Biochem Biophys Res Commun 347(1):358–362

    Article  PubMed  CAS  Google Scholar 

  22. Liu WB, Cui ZH, Ao L et al (2011) Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a. Toxicol Appl Pharmacol 251(1):70–78

    Article  PubMed  CAS  Google Scholar 

  23. Tsujiuchi T, Sugata E, Masaoka T et al (2007) Expression and DNA methylation patterns of Tslc1 and Dal-1 genes in hepatocellular carcinomas induced by N-nitrosodiethylamine in rats. Cancer Sci 98(7):943–948

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by funds from Ministry of Health of Henan province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Huijuan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Li, W., Kang, Y. et al. SynCAM, a novel putative tumor suppressor, suppresses growth and invasiveness of glioblastoma. Mol Biol Rep 40, 5469–5475 (2013). https://doi.org/10.1007/s11033-013-2645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2645-9

Keywords

Navigation