Skip to main content
Log in

Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Stem cells with high self-renewal and tissue regeneration potentials are the core components of regenerative medicine. Adult stem cells with many available sources, high repairing ability, and also possessing no ethical issues are popular candidates in the clinical field. In this study we looked upon the effects of two transcription factors Nanog and Rex-1 in self-renewal and differentiation abilities of a subpopulation of cord blood stem cells known as unrestricted somatic stem cells (USSCs). USSCs were expanded and transfected in vitro with siRNAs targeting either Nanog, Rex-1, and in combination. Gene suppressions were achieved at both transcript and proteome level. Differentiations were evaluated by specific Real time PCR and differentiating staining. Nanog knock down revealed a significant increase in osteogenic markers, Osteocalcin and Osteopontin expression as well as a positive Alizarin Red staining, which proposes Osteogenesis. This treatment also became positive for Oil Red staining, implying adipogenic differentiation as well. In contrast, Rex-1 knock down showed an increase in MAP II and Nestin expression, which is a hall mark of neural differentiation. Surprisingly, treatment with both siRNAs did not express any changes in any of the assessed markers. Therefore, our results indicated a bilateral mesenchymal differentiation for Nanog and a neural lineage fate for Rex-1 suppression. Considering that both transcription factors are core activators of self-renewal and also are orchestrating with other factors, our results imply a positive feedback in response to changes in the regulatory network of self-renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aejaz HM, Aleem AK, Parveen N, Khaja MN, Narusu ML, Habibullah CM (2007) Stem cell therapy–present status. Transpl Proc 39(3):694–699

    Article  CAS  Google Scholar 

  2. Choumerianou DM, Dimitriou H, Kalmanti M (2008) Stem cells: promises versus limitations. Tissue Eng Part B 14(1):53–60

    Article  CAS  Google Scholar 

  3. Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A (2008) Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 30(3):121–127

    Article  PubMed  CAS  Google Scholar 

  4. Brignier AC, Gewirtz AM (2010) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 125(2 Suppl 2):S336–S344

    Article  PubMed  Google Scholar 

  5. Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN (2011) Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med 22(1):165–174

    Article  PubMed  CAS  Google Scholar 

  6. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici Ö, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Müller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135

    Article  PubMed  Google Scholar 

  7. Jager M, Wild A, Lensing-Hohn S, Krauspe R (2003) Influence of different culture solutions on osteoblastic differentiation in cord blood and bone marrow derived progenitor cells. Biomed Tech (Berl) 48(9):241–244

    Article  CAS  Google Scholar 

  8. Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, Bickford PC, Klasko SK, El-Badri NS (2005) Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci 1049:67–83 (Stem Cell Biology: Development and Plasticity)

    Article  PubMed  CAS  Google Scholar 

  9. Kögler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34(11):1589–1595

    Article  PubMed  Google Scholar 

  10. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115(10):2131–2138

    PubMed  CAS  Google Scholar 

  11. Fallahi-Sichani M, Soleimani M, Najafi SM, Kiani J, Arefian E, Atashi A (2007) In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biol Int 31(3):299–303

    Article  PubMed  CAS  Google Scholar 

  12. Greschat S, Schira J, Kury P, Rosenbaum C, de Souza Silva MA, Kogler G, Wernet P, Muller HW (2008) Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev 17(2):221–232

    Article  PubMed  CAS  Google Scholar 

  13. Sensken S, Waclawczyk S, Knaupp A, Trapp T, Enczmann J, Wernet P, Kogler G (2007) In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy 9(4):362–378

    Article  PubMed  CAS  Google Scholar 

  14. Wild A, Jager M, Lensing-Hoehn S, Werner A, Krauspe R (2004) Growth behaviour of human mononuclear cells derived from bone marrow and cord blood on a collagen carrier for osteogenic regeneration. Biomed Tech (Berl) 49(9):227–232

    Article  CAS  Google Scholar 

  15. Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23(43):7150–7160

    Article  PubMed  CAS  Google Scholar 

  16. Ghodsizad A, Niehaus M, Kögler G, Martin U, Wernet P, Bara C, Khaladj N, Loos A, Makoui M, Thiele J, Mengel M, Karck M, Klein HM, Haverich A, Ruhparwar A (2009) Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart 95(1):27–35

    Article  PubMed  CAS  Google Scholar 

  17. Amarzguioui M, Rossi JJ, Kim D (2005) Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett 579(26):5974–5981

    Article  PubMed  CAS  Google Scholar 

  18. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2008) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685

    Article  Google Scholar 

  19. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457(7228):426–433

    Article  PubMed  CAS  Google Scholar 

  20. Chen X, Wu R, Feng S, Gu B, Dai L, Zhang M, Zhao X (2007) Single cell derived murine embryonic stem cell clones stably express Rex1-specific green fluorescent protein and their differentiation study. Biochem Biophys Res Commun 362(2):467–473

    Article  PubMed  CAS  Google Scholar 

  21. Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K-Y, Sung KW, Lee CWH, Zhao X-D, Chiu K-P, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei C-L, Ruan Y, Lim B, Ng H-H (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440

    Article  PubMed  CAS  Google Scholar 

  22. Masui S, Ohtsuka S, Yagi R, Takahashi K, Ko M, Niwa H (2008) Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Dev Biol 8(1):45

    Article  PubMed  Google Scholar 

  23. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956

    Article  PubMed  CAS  Google Scholar 

  24. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, Herbert M, Murdoch A, Strachan T, Lako M (2005) Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 23(8):1035–1043

    Article  PubMed  CAS  Google Scholar 

  25. Scotland KB, Chen S, Sylvester R, Gudas LJ (2009) Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Dev Dyn 238(8):1863–1877

    Article  PubMed  CAS  Google Scholar 

  26. Carlin R, Davis D, Weiss M, Schultz B, Troyer D (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4(1):8

    Article  PubMed  Google Scholar 

  27. Go MJ, Takenaka C, Ohgushi H (2008) Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities. Exp Cell Res 314(5):1147–1154

    Article  PubMed  CAS  Google Scholar 

  28. Lamoury F, Croitoru-Lamoury J, Brew B (2006) Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy 8(3):228–242

    Article  PubMed  CAS  Google Scholar 

  29. Shi W, Wang H, Pan G, Geng Y, Guo Y, Pei D (2006) Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem 281(33):23319–23325

    Article  PubMed  CAS  Google Scholar 

  30. Adegani F, Langroudi L, Arefian E, Shafiee A, Dinarvand P, Soleimani M (2012) A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Mol biol Rep 40(5):3693–3703

    Article  PubMed  Google Scholar 

  31. Hosler BA, LaRosa GJ, Grippo JF, Gudas LJ (1989) Expression of REX-1, a gene containing zinc finger motifs, is rapidly reduced by retinoic acid in F9 teratocarcinoma cells. Mol Cell Biol 9(12):5623–5629

    PubMed  CAS  Google Scholar 

  32. Hashemi SM, Soleimani M, Zargarian SS, Haddadi-Asl V, Ahmadbeigi N, Soudi S, Gheisari Y, Hajarizadeh A, Mohammadi Y (2009) In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(ε-caprolactone) nanofiber scaffolds. Cells Tissues Organs 190(3):135–149

    Article  PubMed  CAS  Google Scholar 

  33. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98(9):2615–2625

    Article  PubMed  CAS  Google Scholar 

  34. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13(1):69–80

    Article  PubMed  CAS  Google Scholar 

  35. Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J, Moorman M, Simonetti D, Craig S, Marshak D (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  36. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the Nanog, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18(7):1093–1108

    Article  PubMed  CAS  Google Scholar 

  37. Rodda DJ, Chew J-L, Lim L-H, Loh Y-H, Wang B, Ng H-H, Robson P (2005) Transcriptional regulation of Nanog by OCT4 and SOX2. J Biol Chem 280(26):24731–24737

    Article  PubMed  CAS  Google Scholar 

  38. Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ (2005) High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23(3):299–305

    Article  PubMed  CAS  Google Scholar 

  39. Raman JD, Mongan NP, Liu L, Tickoo SK, Nanus DM, Scherr DS, Gudas LJ (2006) Decreased expression of the human stem cell marker, Rex-1 (zfp-42), in renal cell carcinoma. Carcinogenesis 27(3):499–507

    Article  PubMed  CAS  Google Scholar 

  40. Mongan NP, Martin KM, Gudas LJ (2006) The putative human stem cell marker, Rex-1 (Zfp42): structural classification and expression in normal human epithelial and carcinoma cell cultures. Mol Carcinog 45(12):887–900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Forouzandeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langroudi, L., Forouzandeh, M., Soleimani, M. et al. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol Biol Rep 40, 4429–4437 (2013). https://doi.org/10.1007/s11033-013-2533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2533-3

Keywords

Navigation