Skip to main content

Advertisement

Log in

Effect of Danshen aqueous extract on serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, cerebral TGF-β1 positive expression level and its neuroprotective mechanisms in CIR rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To observe the effects of Danshen aqueous extract (DSAE) on the cerebral tissue and nerve stem cells in cerebral ischemia reperfusion (CIR) rats. The model rats were prepared by occlusion of the middle cerebral artery for 2 h and then by reperfusion. They were randomly divided into five groups: a control group, an CIR group and three DSAE-treated groups. As compared with the sham control group, there was significant increase (P < 0.05, P < 0.01) in the serum high-sensitivity C-reactive protein (hs-CRP) and interleukin-8 (IL-8) levels, interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral transforming growth factor beta 1 (TGF-β1) positive expression and cerebral neuron specific enolase (NSE) levels, and decrease in fas-associated protein with death domain (FADD) and death-associated protein (Daxx) positive expression levels in the CIR group. Compared with CIR group, DSAE treatment dose-dependently significantly decreased serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral TGF-β1 positive expression and cerebral NSE levels, and increase FADD and Daxx positive expression levels in the CIR + DSAE groups. Taken together, these results suggest that DSAE has a neuroprotective role in the CIR rats, which may be related to improvement of immunity function, proteins and genes expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Date I, Takagi N, Takagi K, Tanonaka K, Funakoshi H, Matsumoto K, Nakamura T, Takeo S (2006) Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood–brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci Lett 407:141–145

    Article  PubMed  CAS  Google Scholar 

  2. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  PubMed  CAS  Google Scholar 

  3. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  4. Smith ML, Bendek G, Dahlgren N, Rosén I, Wieloch T, Siesjö BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. 2: a 2-vessel occlusion model. Acta Neurol Scand 69:385–401

    Article  PubMed  CAS  Google Scholar 

  5. Dirnagl U, Macleod MR (2009) Stroke research at a road block: the streets from adversity should be paved with meta-analysis and good laboratory practice. Br J Pharmacol 157(7):1154–1156

    Article  PubMed  CAS  Google Scholar 

  6. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  7. Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    Article  PubMed  CAS  Google Scholar 

  8. Cheng TO (2006) Danshen: a versatile Chinese herbal drug for the treatment of coronary heart disease. Int J Cardiol 113:437–438

    Article  PubMed  Google Scholar 

  9. Cheng TO (2006) Danshen: what every cardiologist should know about this Chinese herbal drug. Int J Cardiol 110:411–412

    Article  PubMed  Google Scholar 

  10. Ramsden N, Perrin J, Ren Z, Lee BD, Zinn N, Dawson VL, Tam D, Bova M, Lang M, Drewes G, Bantscheff M, Bard F, Dawson TM, Hopf C (2011) Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons. ACS Chem Biol 6:1021–1028

    Article  PubMed  CAS  Google Scholar 

  11. Li M-H, Chen J-M, Peng Y, Wu QL, Xiao P-G (2008) Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol 120:419–426

    Article  PubMed  Google Scholar 

  12. Wu WWP, Yeung JHK (2010) Inhibition of warfarin hydroxylation by major tanshinones of Danshen (Salvia miltiorrhiza) in the rat in vitro and in vivo. Phytomedicine 17:219–226

    Article  PubMed  CAS  Google Scholar 

  13. Ji XY, Tan BK, Zhu YZ (2000) Salvia miltiorrhiza and ischemic diseases. Acta Pharmacol Sin 21:1089–1094

    PubMed  CAS  Google Scholar 

  14. Tam WY, Chook P, Qiao M, Chan LT, Chan TY, Poon YK, Fung KP, Leung PC, Woo KS (2009) The efficacy and tolerability of adjunctive alternative herbal medicine (Salvia miltiorrhiza and Pueraria lobata) on vascular function and structure in coronary patients. J Altern Complim Med 15:415–421

    Article  Google Scholar 

  15. Kang DG, Yun YG, Ryoo JH, Lee HS (2002) Anti-hypertensive effect of water extract of Danshen on renovascular hypertension through inhibition of the rennin angiotensin system. Am J Chin Med 30:87–93

    Article  PubMed  Google Scholar 

  16. Wang XF, Zhao MQ (2003) Ligustrazine and Salvia miltiorrhiza injection solution in complementary therapy of pregnancy-induced hypertension: clinical analysis of 60 cases. Di Yi Jun Yi Da Xue Xue Bao 23:969–971

    PubMed  Google Scholar 

  17. Chan K, Chui SH, Wong DY, Ha WY, Chan CL, Wong RN (2004) Protective effects of Danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sci 75:3157–3171

    Article  PubMed  CAS  Google Scholar 

  18. Tian XH, Xue WJ, Ding XM (2005) Application of Danshen injection on early stage of renal transplantation. Zhongguo Zhong Xi Yi Jie He Za Zhi 25:404–407

    PubMed  Google Scholar 

  19. Zhang M, Li X, Jiu G, Liu Y (2003) Effect of Danshen injection on expression of platelet membrane glycoproteins in patients with type II diabetes mellitus. Zhong Yao Cai 26:738–740

    PubMed  Google Scholar 

  20. Yue KK, Lee KW, Chan KK, Leung KS, Leung AW, Cheng CH (2006) Danshen prevents the occurrence of oxidative stress in the eye and aorta of diabetic rats without affecting the hyperglycemic state. J Ethnopharmacol 106:136–141

    Article  PubMed  Google Scholar 

  21. Qian S, Huo D, Wang S, Qian Q (2011) Inhibition of glucose-induced vascular endothelial growth factor expression by Salvia miltiorrhiza hydrophilic extract in human microvascular endothelial cells: evidence for mitochondrial oxidative stress. J Ethnopharmacol 137:985–991

    Article  PubMed  Google Scholar 

  22. Chen KJ (1981) Certain progress in the treatment of coronary heart disease with traditional medicinal plants in China. Am J Chin Med 9:193–196

    Article  PubMed  CAS  Google Scholar 

  23. Wei ZM (1996) Effects of injection Salviae miltiorrhizae on senile chronic asthmatic bronchitis patients. Zhongguo Zhong Xi Yi Jie He Za Zhi 16:402–405

    PubMed  CAS  Google Scholar 

  24. Del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10:95–112

    Article  PubMed  Google Scholar 

  25. Emsley HC, Tyrrell PJ (2002) Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 22:1399–1419

    Article  PubMed  CAS  Google Scholar 

  26. Lee JC, Cho GS, Kim HJ, Lim JH, Oh YK, Nam W, Chung JH, Kim WK (2005) Accelerated cerebral ischemic injury by activated macrophages/microglia after lipopolysaccharide microinjection into rat corpus callosum. Glia 50:168–181

    Article  PubMed  Google Scholar 

  27. Bemeur C, Ste-Marie L, Desjardins P, Vachon L, Butterworth RF, Hazell AS, Montgomery J (2005) Dehydroascorbic acid normalizes several markers of oxidative stress and inflammation in acute hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 46:399–407

    Article  PubMed  CAS  Google Scholar 

  28. Kochanek PM, Hallenbeck JM (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23:1367–1379

    Article  PubMed  CAS  Google Scholar 

  29. Barone FC, Schmidt DB, Hillegass LM, Price WJ, White RF, Feuerstein GZ, Clark RK, Lee EV, Griswold DE, Sarau HM (1992) Reperfusion increases neutrophils and leukotriene B4 receptor binding in rat focal ischemia. Stroke 23:1337–1347

    Article  PubMed  CAS  Google Scholar 

  30. Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8:1363–1368

    Article  PubMed  CAS  Google Scholar 

  31. Frohlich M, Imhof A, Berg G, Hutchinson WL, Pepys MB, Boeing H, Muche R, Brenner H, Koenig W (2000) Association between C-reactive protein and features of the metabolic syndrome: a population-based study. Diabetes Care 23:1835–1839

    Article  PubMed  CAS  Google Scholar 

  32. Hak AE, Stehouwer CD, Bots ML, Polderman KH, Schalkwijk CG, Westendorp IC, Hofman A, Witteman JC (1999) Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vasc Biol 19:1986–1991

    Article  PubMed  CAS  Google Scholar 

  33. Chambers JC, Eda S, Bassett P, Karim Y, Thompson SG, Gallimore JR, Pepys MB, Kooner JS (2001) C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. Circulation 104:145–150

    Article  PubMed  CAS  Google Scholar 

  34. Mendall MA, Patel P, Ballam L, Strachan D, Northfield TC (1996) C reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study. Br Med J 312:1061–1065

    Article  CAS  Google Scholar 

  35. Di Napoli M, Schwaninger M, Cappelli R, Ceccarelli E, Di Gianfilippo G, Donati C, Emsley HC, Forconi S, Hopkins SJ, Masotti L, Muir KW, Paciucci A, Papa F, Roncacci S, Sander D, Sander K, Smith CJ, Stefanini A, Weber D (2005) Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: a statement for health care professionals from the CRP Pooling Project members. Stroke 36:1316–1329

    Article  PubMed  Google Scholar 

  36. Song IU, Kim YD, Kim JS, Lee KS, Chung SW (2010) Can high-sensitivity Creactive protein and plasma homocysteine levels independently predict the prognosis of patients with functional disability after first-ever ischemic stroke? Eur Neurol 64:304–310

    Article  PubMed  CAS  Google Scholar 

  37. Youn CS, Choi SP, Kim SH, Oh SH, Jeong WJ, Kim HJ, Park KN (2010) Serum highly selective C-reactive protein concentration is associated with the volume of ischemic tissue in acute ischemic stroke. Am J Emerg Med 30(1):124–128

    Article  PubMed  Google Scholar 

  38. Ormstad H, Aass HC, Lund-Sorensen N, Amthor KF, Sandvik L (2011) Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol 258:677–685

    Article  PubMed  CAS  Google Scholar 

  39. Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD, Yano S, Bar-Eli M, Radinsky R, Pettaway CA, Dinney CP (2000) Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res 6(5):2104–2119

    PubMed  CAS  Google Scholar 

  40. Huang J, Yao JL, Zhang L, Bourne PA, Quinn AM, di Sant’Agnese PA, Reeder JE (2005) Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer. Am J Pathol 166(6):1807–1815

    Article  PubMed  CAS  Google Scholar 

  41. Veltri RW, Miller MC, Zhao G, Ng A, Marley GM, Wright GL Jr, Vessella RL, Ralph D (1999) Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology 53(1):139–147

    Article  PubMed  CAS  Google Scholar 

  42. Lehrer S, Diamond EJ, Mamkine B, Stone NN, Stock RG (2004) Serum interleukin-8 is elevated in men with prostate cancer and bone metastases. Technol Cancer Res Treat 3(5):411

    PubMed  CAS  Google Scholar 

  43. Reiland J, Furcht LT, McCarthy JB (1999) CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 41(2):78–88

    Article  PubMed  CAS  Google Scholar 

  44. Patel BJ, Pantuck AJ, Zisman A, Tsui KH, Paik SH, Caliliw R, Sheriff S, Wu L, deKernion JB, Tso CL, Belldegrun AS (2000) CL1-GFP: an androgen independent metastatic tumor model for prostate cancer. J Urol 164(4):1420–1425

    Article  PubMed  CAS  Google Scholar 

  45. Lee LF, Louie MC, Desai SJ, Yang J, Chen HW, Evans CP, Kung HJ (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23(12):2197–2205

    Article  PubMed  CAS  Google Scholar 

  46. Razonable RR, Henault M, Watson HL, Paya CV (2005) Nystatin induces secretion of interleukin IL-1beta, IL-8, and tumor necrosis factor alpha by a toll-like receptor-dependent mechanism. Antimicrob Agents Chemother 49(8):3546–3549

    Article  PubMed  CAS  Google Scholar 

  47. Inoue K, Slaton JW, Kim SJ, Perrotte P, Eve BY, Bar-Eli M, Radinsky R, Dinney CP (2000) Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res 60(8):2290–2299

    PubMed  CAS  Google Scholar 

  48. Liu N, Du HW, Chen RH, Zheng A, Huang HP, Wu ZH (2007) The effect of interleukin-10 on neurocyte apoptosis in cerebral ischemia in rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 23:498–500

    PubMed  CAS  Google Scholar 

  49. Woiciechowsky C, Schoning B, Stoltenburg-Didinger G, Stockhammer F, Volk HD (2004) Brain-IL-1 triggers astrogliosis through induction of IL-6: inhibition by propranolol and IL-10. Med Sci Monit 10:BR325–BR330

    PubMed  CAS  Google Scholar 

  50. Dietrich WD, Busto R, Bethea JR (1999) Postischemic hypothermia and IL-10 treatment provide long-lasting neuroprotection of CA1 hippocampus following transient global ischemia in rats. Exp Neurol 158:444–450

    Article  PubMed  CAS  Google Scholar 

  51. Vila N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A (2003) Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 34:671–675

    Article  PubMed  CAS  Google Scholar 

  52. Perini F, Morra M, Alecci M (2001) Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients. Neurol Sci 22:289–296

    Article  PubMed  CAS  Google Scholar 

  53. Tarkowski E, Rosengren L, Blomstrand C, Wikkelsö C, Jensen C, Ekholm S, Tarkowski A (1997) Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol 110:492–499

    Article  PubMed  CAS  Google Scholar 

  54. Zhai QH, Futrell N, Chen FJ (1997) Gene expression of IL-10 in relationship to TNF-α, IL-1 and IL-2 in the rat brain following middle cerebral artery occlusion. J Neurol Sci 152:119–124

    Article  PubMed  CAS  Google Scholar 

  55. Vila N, Castillo J, Dávalos A, Chamorro A (2000) Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 31:2325–2329

    Article  PubMed  CAS  Google Scholar 

  56. Zheng Z, Yenari MA (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 26:884–892

    Article  PubMed  CAS  Google Scholar 

  57. Dietl M, Pohle R, Weingartner M, Polgar R, Grassel E, Schwab S, Kolominsky-Rabas P (2009) Stroke etiology and long-term need of care in ischemic stroke patients. Fortschr Neurol Psychiatr 77(12):714–719

    Article  PubMed  CAS  Google Scholar 

  58. Albers GW, Amarenco P, Easton JD, Sacco RL, Teal P (2008) Antithrombotic and thrombolytic therapy for ischemic stroke: American college of chest physicians evidence-based clinical practice guidelines (8th edition). Chest 133(6):630S–669S

    Article  PubMed  CAS  Google Scholar 

  59. Mostaza JM, Martin-Jadraque R, Vicente I, San Martin MA, Lahoz C (2009) Patients at high risk of cerebrovascular disease: the REACH study. Cerebrovasc Dis 27(1):77–81

    Article  PubMed  Google Scholar 

  60. Liu LS, Caguioa ES, Park CG, Quek DKL, Saito I, Venketasubramanian N, Wong KSL, Reid JL (2006) Reducing stroke risk in hypertensive patients: Asian consensus conference recommendations. Int J Stroke 1(3):150–157

    Article  PubMed  Google Scholar 

  61. Ellnain-Wojtaszek M, Kruczyński Z, Kasprak J (2003) Investigation of the free radical scavenging activity of Ginkgo biloba L. leaves. Fitoterapia 74:1–6

    Article  PubMed  CAS  Google Scholar 

  62. Lee EJ, Chen HY, Wu TS, Chen TY, Ayoub IA, Kenneth I, Maynard MJ (2002) Acute administration of Ginkgo biloba extract (EGb761) affords neuroprotection against permanent and transient focal cerebral ischemia in Spragrue–Dawley rats. J Neurosci Res 68:636–645

    Article  PubMed  CAS  Google Scholar 

  63. Liu CS, Cheng Y, Hu JF, Zhang W, Chen NH, Zhang JT (2006) Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract (EGb 761). Acta Pharmacol Sin 27(9):1137–1145

    Article  PubMed  CAS  Google Scholar 

  64. Bertolino P, Deckers M, Lebrin F, ten Dijke P (2005) Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. Chest 128:585–590

    Article  Google Scholar 

  65. Guo B, Slevin M, Li C, Parameshwar S, Liu D, Kumar P, Bernabeu C, Kumar S (2004) CD105 inhibits transforming growth factor-β-smad3 signalling. Anticancer Res 24:1337–1345

    PubMed  CAS  Google Scholar 

  66. Krupinski J, Kumar P, Kumar S, Kaluza J (1996) Increased expression of TGF-β1 in brain tissue after ischaemic stroke in humans. Stroke 27:852–857

    Article  PubMed  CAS  Google Scholar 

  67. Ata AK, Funa K, Olsson Y (1997) Expression of TGF-β isoforms and type I receptor in necrotizing human brain lesions. Acta Neuropathol 93:326–333

    Article  PubMed  CAS  Google Scholar 

  68. Zhang Z, Zhang L, Jiang Q, Chopp M (2002) Bone-marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90:284–288

    Article  PubMed  CAS  Google Scholar 

  69. Krupinski J, Vodovotz Y, Li C, Slowik A, Beevers D, Flanders KC, Lip G, Kumar P, Szczudlik A (1998) Inducible nitric oxide production and expression of transforming growth factor-β1 in serum and CSF after cerebral ischaemic stroke in man. Nitric Oxide 2:442–453

    Article  PubMed  CAS  Google Scholar 

  70. Berger RP, Beers SR, Richichi R, Wiesman D, Adelson PD (2007) Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J Neurotrauma 24(12):1793–1801

    Article  PubMed  Google Scholar 

  71. Shore PM, Berger RP, Varma S, Janesko KL, Wisniewski SR, Clark RS, Adelson PD, Thomas NJ, Lai YC, Bayir H, Kochanek PM (2007) Cerebrospinal fluid biomarkers versus glasgow coma scale and glasgow outcome scale in pediatric traumatic brain injury: the role of young age and inflicted injury. J Neurotrauma 24(1):75–86

    Article  PubMed  Google Scholar 

  72. Rosén H, Sunnerhagen KS, Herlitz J, Blomstrand C, Rosengren L (2001) Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation 49(2):183–191

    Article  PubMed  Google Scholar 

  73. Meric E, Gunduz A, Turedi S, Cakir E, Yandi M (2010) The prognostic value of neuron-specific enolase in head trauma patients. J Emerg Med 38(3):297–301

    Article  PubMed  Google Scholar 

  74. Palmio J, Huuhka M, Laine S, Huhtala H, Peltola J, Leinonen E, Suhonen J, Keränen T (2010) Electroconvulsive therapy and biomarkers of neuronal injury and plasticity: serum levels of neuron-specific enolase and S-100b protein. Psychiatry Res 177(1–2):97–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Niu.

Additional information

X.-Y. Liang, H.-N. Li and X.-Y. Yang equally contribute to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, XY., Li, HN., Yang, XY. et al. Effect of Danshen aqueous extract on serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, cerebral TGF-β1 positive expression level and its neuroprotective mechanisms in CIR rats. Mol Biol Rep 40, 3419–3427 (2013). https://doi.org/10.1007/s11033-012-2419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2419-9

Keywords

Navigation