Skip to main content
Log in

Expression analysis, single nucleotide polymorphisms and combined genotypes in candidate genes and their associations with growth and carcass traits in Qinchuan cattle

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The apolipoprotein E (ApoE) gene is an important component of plasma lipoprotein, and Fas apoptosis inhibitory molecule (FAIM) is a novel anti-apoptotic gene. In this study, we researched and discussed seven genes in eight different tissues in Qinchuan cattle by quantitative Real-time PCR. The result of analysis showed that ApoE and FAIM 2 genes had a correlation with muscle and fat. PCR–RFLP was applied to analyze the genetic variations of the ApoE and FAIM 2 genes and verify the effect on growth and carcass traits in a total of 365 Qinchuan cattles. The result of haplotype analysis showed that nine different haplotypes were identified among the four SNPs in ApoE and FAIM 2 genes. The statistical analyses indicated that the four SNPs were significant association with growth and carcass traits (P < 0.05, N = 365); and the four SNPs were significant association between nine combined genotypes of candidate genes and growth and carcass traits. Taken together, our results provide the evidence that polymorphisms in candidate genes are associated with growth and carcass traits in Qinchuan cattle, and may be used as a possible candidate for marker-assisted selection and management in beef cattle breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ApoE :

Apolipoprotein E

FAIM :

Fas apoptosis inhibitory molecule

PCR-RFLP:

Polymerase chain reaction–restriction fragment length polymorphism

SNPs:

Single nucleotide polymorphisms

PC:

Pheochromocytoma cell

NGF:

Nerve growth factor

FasL:

Fas/Fas ligand

EST:

Expressed sequence tag

LD:

Linkage disequilibrium

He :

Heterozygosity

Ho :

Homozygosity

PIC :

Polymorphism information content

References

  1. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  PubMed  CAS  Google Scholar 

  2. Schachter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D (1994) Genetic associations with human longevity at the ApoE and ACE loci. Nat Genet 6:29–32

    Article  PubMed  CAS  Google Scholar 

  3. Orchard S, Zhu W, Julian JRK, Hermjakob H, Apweiler R (2003) Further advances in the development of a data interchange standard for proteomics data. Proteomics 3:2065–2066

    Article  PubMed  CAS  Google Scholar 

  4. Das HK, McPherson J, Bruns GA, Karathanasis SK, Breslow JL (1985) Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J Biol Chem 260:6240

    PubMed  CAS  Google Scholar 

  5. Li SX, Gao P, Chen ZM, Zhang H, Li JQ (2010) The single nucleotide polymorphism of the porcine APOE Exon 4. Acta Agriculturae Universitatis Jiangxiensis 32:0647–0650

    CAS  Google Scholar 

  6. Marques-Vidal P, Bongard V, Ruidavets JB, Fauvel J, Perret B, Ferrieres J (2003) Effect of apolipoprotein E alleles and angiotensin-converting enzyme insertion/deletion polymorphisms on lipid and lipoprotein markers in middle-aged men and in patients with stable angina pectoris or healed myocardial infarction. Am J Cardiol 92:1102–1105

    Article  PubMed  CAS  Google Scholar 

  7. Viitanen L, Pihlajamaki J, Miettinen R, Karkkainen P, Vauhkonen I, Halonen P, Kareinen A, Lehto S, Laakso M (2001) Apolipoprotein E gene promoter (−219G/T) polymorphism is associated with premature coronary heart disease. J Mol Med (Berl) 79:732–737

    Article  CAS  Google Scholar 

  8. Li HM, Pan M, Liang S, Wang HM, Chua ZC, Zhu HJ (2003) Effect of apolipoprotein E, angiotensinconverting enzyme gene on coronary heart disease in Chinese population. Chin J Mod Med (Chin) 13:35–37

    CAS  Google Scholar 

  9. Hatters DM, Peters-Libeu CA, Weisgraber KH (2006) Apolipoprotein E structure: insights into function. Trends Biochem Sci 31:445–454

    Article  PubMed  CAS  Google Scholar 

  10. Diedrich JF, Minnigan H, Carp RI, Whitaker JN, Race R, Frey WN, Haase AT (1991) Neuropathological changes in scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J Virol 65:4759–4768

    PubMed  CAS  Google Scholar 

  11. Boyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE, Weisgraber KH et al (1989) A role for apolipoprotein E, apolipoprotein AI, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J Clin Investig 83:1015

    Article  PubMed  CAS  Google Scholar 

  12. Schneider TJ, Fischer GM, Donohoe TJ, Colarusso TP, Rothstein TL (1999) A novel gene coding for a Fas apoptosis inhibitory molecule (FAIM) isolated from inducibly Fas-resistant B lymphocytes. J Exp Med 189:949–956

    Article  PubMed  CAS  Google Scholar 

  13. Rothstein TL, Zhong X, Schram BR, Negm RS, Donohoe TJ, Cabral DS et al (2000) Receptor-specific regulation of B-cell susceptibility to Fas-mediated apoptosis and a novel Fas apoptosis inhibitory molecule. Immunol Rev 176:116–133

    Article  PubMed  CAS  Google Scholar 

  14. Kaku H, Rothstein TL (2010) Correction: Fas apoptosis inhibitory molecule enhances CD40 signaling in B cells and augments the plasma cell compartment. J Immunol 185:771

    Article  CAS  Google Scholar 

  15. Zhong X, Schneider TJ, Cabral DS, Donohoe TJ, Rothstein TL (2001) An alternatively spliced long form of Fas apoptosis inhibitory molecule (FAIM) with tissue-specific expression in the brain. Mol Immunol 38:65–72

    Article  PubMed  CAS  Google Scholar 

  16. Sole C, Dolcet X, Segura MF, Gutierrez H, Diaz-Meco MT, Gozzelino R et al (2004) The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling. J Cell Biol 167:479–492

    Article  PubMed  CAS  Google Scholar 

  17. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  PubMed  CAS  Google Scholar 

  18. Segura MF, Sole C, Pascual M, Moubarak RS, Perez-Garcia MJ, Gozzelino R, Iglesias V et al (2007) The long form of Fas apoptotic inhibitory molecule is expressed specifically in neurons and protects them against death receptor-triggered apoptosis. J Neurosci 27:11228–11241

    Article  PubMed  CAS  Google Scholar 

  19. Hemond M, Rothstein TL, Wagner G (2009) Fas apoptosis inhibitory molecule contains a novel beta-sandwich in contact with a partially ordered domain. J Mol Biol 386:1024–1037

    Article  PubMed  CAS  Google Scholar 

  20. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR et al (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809

    Article  PubMed  CAS  Google Scholar 

  21. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  22. Kaku H, Rothstein TL (2009) Fas apoptosis inhibitory molecule expression in B cells is regulated through IRF4 in a feed-forward mechanism. J Immunol 183:5575–5581

    Article  PubMed  CAS  Google Scholar 

  23. Lennon G, Auffray C, Polymeropoulos M, Soares MB (1996) The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33:151–152

    Article  PubMed  CAS  Google Scholar 

  24. Rothstein TL (2000) Inducible resistance to Fas-mediated apoptosis in B cells. Cell Res 10:245–266

    Article  PubMed  CAS  Google Scholar 

  25. Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5:118–125

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook JG, Russell R, Umrania Y, Edwards YJ, Campbell RD, Elgar G, Clark MS (2002) Fugu orthologues of human major histocompatibility complex genes: a genome survey. Immunogenetics 54:367–380

    Article  PubMed  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  28. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  29. Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379–390

    PubMed  CAS  Google Scholar 

  30. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  31. Hoey AJ, Reich MM, Davis G, Shorthose R, Sillence MN (1995) Beta 2-adrenoceptor densities do not correlate with growth, carcass quality, or meat quality in cattle. J Anim Sci 73:3281–3286

    PubMed  CAS  Google Scholar 

  32. Cianzio DS, Topel DG, Whitehurst GB, Beitz DC, Self HL (1985) Adipose tissue growth and cellularity: changes in bovine adipocyte size and number. J Anim Sci 60:970–976

    PubMed  CAS  Google Scholar 

  33. Zhang YY, Zan LS, Wang HB (2010) Genome array on differentially expressed genes of muscle tissue in intact male and castrated Qinchuan cattle. Yi Chuan 32:1166–1174

    PubMed  CAS  Google Scholar 

  34. Rathmell JC, Townsend SE, Xu JC, Flavell RA, Goodnow CC (1996) Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell 87:319–329

    Article  PubMed  CAS  Google Scholar 

  35. Foote LC, Marshak-Rothstein A, Rothstein TL (1998) Tolerant B lymphocytes acquire resistance to Fas-mediated apoptosis after treatment with interleukin 4 but not after treatment with specific antigen unless a surface immunoglobulin threshold is exceeded. J Exp Med 187:847–853

    Article  PubMed  CAS  Google Scholar 

  36. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  37. Park C, Sakamaki K, Tachibana O, Yamashima T, Yamashita J, Yonehara S (1998) Expression of fas antigen in the normal mouse brain. Biochem Biophys Res Commun 252:623–628

    Article  PubMed  CAS  Google Scholar 

  38. Calero O, Hortiguela R, Bullido MJ, Calero M (2009) Apolipoprotein E genotyping method by real time PCR, a fast and cost-effective alternative to the TaqMan and FRET assays. J Neurosci Methods 183:238–240

    Article  PubMed  CAS  Google Scholar 

  39. Tatzelt J, Maeda N, Pekny M, Yang SL, Betsholtz C, Eliasson C, Cayetano J et al (1996) Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. Neurology 47:449–453

    Article  PubMed  CAS  Google Scholar 

  40. Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309

    Article  PubMed  CAS  Google Scholar 

  41. Saunders MA, Slatkin M, Garner C, Hammer MF, Nachman MW (2005) The extent of linkage disequilibrium caused by selection on G6PD in humans. Genetics 171:1219–1229

    Article  PubMed  CAS  Google Scholar 

  42. Saunders MA, Hammer MF, Nachman MW (2002) Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics 162:1849–1861

    PubMed  CAS  Google Scholar 

  43. Toomajian C, Kreitman M (2002) Sequence variation and haplotype structure at the human HFE locus. Genetics 161:1609–1623

    PubMed  CAS  Google Scholar 

  44. Komatsu Y, Horiuchi M, Ishiguro N, Matsui T, Shinagawa M (1998) Characterization of the sheep apolipoprotein E (ApoE) gene and allelic variations of the ApoE gene in scrapie Suffolk sheep. Gene 208:131–138

    Article  PubMed  CAS  Google Scholar 

  45. Amouyel P, Vidal O, Launay JM, Laplanche JL (1994) The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt-Jakob disease. Lancet 344:1315–1318

    Article  PubMed  CAS  Google Scholar 

  46. Nakagawa Y, Kitamoto T, Furukawa H, Ogomori K, Tateishi J (1995) Allelic variation of apolipoprotein E in Japanese sporadic Creutzfeldt-Jakob disease patients. Neurosci Lett 187:209–211

    Article  PubMed  CAS  Google Scholar 

  47. Zerr I, Helmhold M, Armstrong VW, Weber T (1995) Apolipoprotein E in Creutzfeldt-Jakob disease. Lancet 345:68

    Article  PubMed  CAS  Google Scholar 

  48. Salvatore M, Seeber AC, Nacmias B, Petraroli R, D’Alessandro M, Sorbi S, Pocchiari M (1995) Apolipoprotein E in sporadic and familial Creutzfeldt-Jakob disease. Neurosci Lett 199:95–98

    Article  PubMed  CAS  Google Scholar 

  49. Rong CL, Peng YX, Liu MX, Wang XP, Song JX (2008) Relationship between polymorphisms of apolipoprotein E gene and serum lipids in Northern Chinese Han population. China J Mod Med 586–588 + 591

Download references

Acknowledgments

Research supported by the 12th “Five-Year” National Science and Technology Key Project (No. 2011AA100307), the National “863” Program of China (No. 2008AA101010), “13115” Sci-Tech Innovation Program of Shaanxi Province (No. 2008ZDKG-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-lin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Lj., Liu, Xl., Wang, Hl. et al. Expression analysis, single nucleotide polymorphisms and combined genotypes in candidate genes and their associations with growth and carcass traits in Qinchuan cattle. Mol Biol Rep 40, 2335–2346 (2013). https://doi.org/10.1007/s11033-012-2315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2315-3

Keywords

Navigation