Skip to main content
Log in

Transcriptome profiling of genes induced by salicylic acid and methyl jasmonate in Polygonum minus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The importance of plant secondary metabolites for both mankind and the plant itself has long been established. However, despite extensive research on plant secondary metabolites, plant secondary metabolism and its regulation still remained poorly characterized. In this present study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of Polygonum minus in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations. This study reveals two different sets of genes induced by SA and MeJA, respectively where stress-related genes were proved to lead to the expression of genes involved in plant secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were up-regulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging reactive oxygen species, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1 and peroxidase. Of these stress-related genes, 15 % of other annotated TDFs are involved mainly in secondary metabolic processes where among these, two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang Y, Xia N, Li X, Shen W, Liang L, Wang C, Wang R, Peng F, Xia B (2011) Molecular cloning and characterization of a phenylalanine ammonia-lyase gene (LrPAL) from Lycoris radiata. Mol Biol Rep 38(3):1935–1940

    Article  PubMed  CAS  Google Scholar 

  2. Wang H, Ma C, Li Z, Ma L, Wang H, Ye H, Xu G, Liu B (2010) Effects of exogenous methyl jasmonate on artemisinin biosynthesis and secondary metabolites in Artemisia annua L. Ind Crop Prod 31(2):214–218

    Article  Google Scholar 

  3. Wang YD, Wu JC, Yuan YJ (2007) Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biol Int 31(10):1179–1183

    Article  PubMed  CAS  Google Scholar 

  4. Mohammed Radwan DE, Ali Fayez K, Younis Mahmoud S, Lu G (2010) Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiol Plant 32(5):891–904

    Article  Google Scholar 

  5. Urones JG, Marcos IS, Pérez BG, Barcala PB (1990) Flavonoids from Polygonum minus. Phytochemistry 29(11):3687–3689

    Article  CAS  Google Scholar 

  6. Vimala S, Ilham MA, Rashih AA, Rohana S, Juliza M (2006) Antioxidant and skin whitening standardized extracts: cosmeceutical and neutraceutical products development and commercialization in FRIM. Highlights of FRIM’s IRPA Projects 2005: identifying potential commercial collaborations. Forest Research Institute, Malaysia

  7. Azlim Almey AA, Ahmed Jalal Khan C, Syed Zahir I, Mustapha Suleiman K, Aisyah MR, Kamarul Rahim K (2010) Total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of aromatic plants’ leaves. Int Food Res J 17:1077–1084

    Google Scholar 

  8. Huda Faujan N, Noriham A, Norrakiah AS, Babji AS (2009) Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr J Biotechnol 8(3):484–489

    CAS  Google Scholar 

  9. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    Article  PubMed  CAS  Google Scholar 

  10. Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26(11):1466–1487

    Article  PubMed  CAS  Google Scholar 

  11. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, Oksman-Caldentey K-M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100(14):8595–8600

    Article  PubMed  CAS  Google Scholar 

  12. Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4(2):136–142

    Article  PubMed  CAS  Google Scholar 

  13. Rischer H, Orešič M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inzé D, Oksman-Caldentey K-M, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103(14):5614–5619

    Article  PubMed  CAS  Google Scholar 

  14. Lopez-Gomez R, Gomez-Lim MA (1992) A method for extracting intact RNA from fruits rich in polysaccharides using ripe mango mesocarp. HortScience 27(5):440–442

    CAS  Google Scholar 

  15. Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65(5):497–503

    Article  PubMed  CAS  Google Scholar 

  16. Anderson A, Blee K, Yang KY (2006) Commercialization of plant systemic defense activation: theory, problems and successes multigenic and induced systemic resistance in plants. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 386–414

  17. Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee Bh, Lee CH, Moon YH (2008) Overexpression of arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375(1):80–85

    Article  PubMed  CAS  Google Scholar 

  18. Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 1:314–319

    Google Scholar 

  19. Tsai YC, Kao CH (2004) The involvement of hydrogen peroxide in abscisic acid-induced activities of ascorbate peroxidase and glutathione reductase in rice roots. Plant Growth Regul 43(3):207–212

    Article  CAS  Google Scholar 

  20. Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in arabidopsis seedlings. Plant Physiol 126(3):1024–1030

    Article  PubMed  CAS  Google Scholar 

  21. Raven E (2002) Peroxidase-catalyzed oxidation of ascorbate structural, spectroscopic and mechanistic correlations in ascorbate peroxidase enzyme-catalyzed electron and radical transfer. In: Holzenburg A, Scrutton N (eds) Subcellular biochemistry, vol 35. Springer, New York, pp 317–349

    Google Scholar 

  22. Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of arabidopsis thaliana to stress combination. J Biol Chem 283(49):34197–34203

    Article  PubMed  CAS  Google Scholar 

  23. Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate-glutathione cycle and stress tolerance in plants. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 91–113

    Chapter  Google Scholar 

  24. Rudrappa T, Neelwarne B, Lakshmanan V, Venkataramareddy SR, Aswathanarayana RG (2006) Elicitation of peroxidase activity in genetically transformed root cultures of Beta vulgaris L. Electron J Biotechnol 9(5):512–521

    Article  Google Scholar 

  25. Perera MR, Jones MGK (2004) Expression of the peroxidase gene promoter (Shpx6b) from Stylosanthes humilis in transgenic plants during insect attack. Entomol Exp Appl 111(3):165–171

    Article  CAS  Google Scholar 

  26. Rudrappa T, Lakshmanan V, Kaunain R, Singara NM, Neelwarne B (2007) Purification and characterization of an intracellular peroxidase from genetically transformed roots of red beet (Beta vulgaris L.). Food Chem 105(3):1312–1320

    Article  CAS  Google Scholar 

  27. Mercke P, Kappers IF, Verstappen FWA, Vorst O, Dicke M, Bouwmeester HJ (2004) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol 135(4):2012–2024

    Article  PubMed  CAS  Google Scholar 

  28. Salas CE, Gomes MTR, Hernandez M, Lopes MTP (2008) Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry 69(12):2263–2269

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe N, Lam E (2005) Two arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280(15):14691–14699

    Article  PubMed  CAS  Google Scholar 

  30. del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 8(20):1129–1132

    Article  PubMed  Google Scholar 

  31. Shivaji R, Camas A, Ankala A, Engelberth J, Tumlinson J, Williams W, Wilkinson J, Luthe D (2010) Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize. J Chem Ecol 36(2):179–191

    Article  PubMed  CAS  Google Scholar 

  32. El-Sharaky AS, Newairy AA, Elguindy NM, Elwafa AA (2010) Spermatotoxicity, biochemical changes and histological alteration induced by gossypol in testicular and hepatic tissues of male rats. Food Chem Toxicol 48(12):3354–3361

    Article  PubMed  CAS  Google Scholar 

  33. Huang LH, Hu JQ, Tao WQ, Li YH, Li GM, Xie PY, Liu XS, Jiang J (2010) Gossypol inhibits phosphorylation of Bcl-2 in human leukemia HL-60 cells. Eur J Pharmacol 645(1–3):9–13

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Howell CP, Chen F, Yin J, Jiang Y (2009) Gossypol—a polyphenolic compound from cotton plant. Adv Food Nutr Res 58:215–263

    Article  PubMed  CAS  Google Scholar 

  35. Martin GS, Liu J, Benedict CR, Stipanovic RD, Magill CW (2003) Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-δ-cadinene synthase. Phytochemistry 62(1):31–38

    Article  PubMed  CAS  Google Scholar 

  36. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103(1):230–235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Universiti Kebangsaan Malaysia through University Research Grants (UKM-AP-BPB-14-2009 and UKM-GUP-KPB-08-33-135) awarded to Prof. Dr. Normah Mohd Noor and Dr. Zamri Zainal respectively. Miss Su-Fang Ee is a recipient of the National Science Fellowship (NSF) granted by Ministry of Science, Technology and Innovation in Malaysia. Mr. Ji-Min Oh participated in the student exchange program supported by Rural Development Administration (RDA), Suwon, Korea. We thank Dr. Grantley W. Lycett from University of Nottingham, United Kingdom for proof reading the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Fang Ee or Zamri Zainal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ee, SF., Oh, JM., Mohd Noor, N. et al. Transcriptome profiling of genes induced by salicylic acid and methyl jasmonate in Polygonum minus . Mol Biol Rep 40, 2231–2241 (2013). https://doi.org/10.1007/s11033-012-2286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2286-4

Keywords

Navigation