Skip to main content
Log in

An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae’s HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000–e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994a) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in S. cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 14:4135–4144

    PubMed  CAS  Google Scholar 

  2. Albertyn J, Hohmann S, Prior BA (1994b) Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr Genet 25:12–18

    Article  PubMed  CAS  Google Scholar 

  3. Banks R, Steggles LJ (2007) A high-level Petri net framework for genetic regulatory networks. J Integr Bioinformatics 4:1–12

    Google Scholar 

  4. Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    PubMed  CAS  Google Scholar 

  5. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol. 33:145–212

    Article  PubMed  CAS  Google Scholar 

  6. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    Article  PubMed  CAS  Google Scholar 

  7. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    PubMed  CAS  Google Scholar 

  8. Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinformatics 8:210–219

    Article  PubMed  CAS  Google Scholar 

  9. Chaouiya C, Remy E, Mosse B, Thieffry D (2003) Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. LNCIS 294:119–126

    Google Scholar 

  10. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Syst Biol 24:2044–2050

    CAS  Google Scholar 

  11. Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23,961–23,968

    Article  CAS  Google Scholar 

  12. Edda K, Nordlander B, Roland K, Peter G, Stefan H (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982

    Article  Google Scholar 

  13. Engela A, Stahlberg H (2002) Aquaglyceroporins: channel proteins with a conserved core, multiple functions, and variable surfaces. Int Rev Cytol 215:75–104

    Article  Google Scholar 

  14. Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transporter family, Stl1p Is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076

    Article  PubMed  CAS  Google Scholar 

  15. Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1. EMBO J 17:5606–5614

    Article  PubMed  CAS  Google Scholar 

  16. Francois J, Schaftingen EV, Hers HG (1984) The mechanism by which glucose increases fructose 2,6-bisphosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem 145:187–193

    Article  PubMed  CAS  Google Scholar 

  17. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  18. Gennemark P, Nordlander B, Hohmann S, Wedelin D (2006) A simple mathematical model of adaptation to high osmolarity in yeast. In Silico Biol 6:193–214

    PubMed  CAS  Google Scholar 

  19. Genrich H, Lautenbach K (1981) System modelling with high-level petri nets. Theor Comp Sci 13:109–136

    Article  Google Scholar 

  20. Gervais P, Beney L (2001) Osmotic mass transfer in the yeast Saccharomyces cerevisiae. Cell Mol Biol 47:831–839

    PubMed  CAS  Google Scholar 

  21. Griggs DW, Johnston M (1991) Regulated expression of Gal4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc Natl Acad Sci USA 88:8597–8601

    Article  PubMed  CAS  Google Scholar 

  22. Hao N, Behar M, Parnell SC, Torres MP, Borchers CH, Elston TC, Dohlman HG (2007) A systems-biology analysis of feedback inhibition in the sho1 osmotic-stress–response pathway. Curr Biol 17:659–667

    Article  PubMed  CAS  Google Scholar 

  23. Hardy S, Robillard PN (2008) Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics 24:209–217

    Article  PubMed  CAS  Google Scholar 

  24. Hawari AH, Mohamed-Hussein ZA (2010) Simulation of a Petri net-based Model of the terpenoid biosynthesis pathway. BMC Bioinformatics 11:83

    Google Scholar 

  25. Heiner M, Koch I (2004) Petri net based model validation in systems biology. In: Cortadella J, Reisig W (eds) Proceedings of the 25th International Conference on the Application and Theory of Petri-nets, LNCS 3009. Springer-Verlag, Berlin/Heidelberg, pp 216–237

  26. Heiner M, Koch I, Will J (2004) Model validation of biological pathways using petri nets-demonstrated for apoptosis. BioSystems 75:15–28

    Article  PubMed  Google Scholar 

  27. Herskowitz I (1995) MAP kinase pathways in yeast: for mating and more. Cell 80:187–197

    Article  PubMed  CAS  Google Scholar 

  28. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  29. Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I (1997) Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem 272:17749–17755

    Article  PubMed  CAS  Google Scholar 

  30. Janiak-Spens F, Sparling D, West A (2000) Novel role for an Hpt domain in stabilizing the phosphorylated state of a response regulator domain. J Bacteriol 182:6673–6678

    Article  PubMed  CAS  Google Scholar 

  31. Janiak-Spens F, Sparling JM, Gurfinkel M, West AH (1999) Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. J Bacteriol 181:411–417

    PubMed  CAS  Google Scholar 

  32. Karlgren S, Pettersson N, Nordlander B, Mathai JC, Brodsky JL, Zeidel ML, Bill RM, Hohmann S (2005) Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling. J Biol Chem 280:7186–7193

    Article  PubMed  CAS  Google Scholar 

  33. Lages F, Silva-Graca M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 145:2577–2585

    PubMed  CAS  Google Scholar 

  34. Lee JM, Gianchandani EP, Eddy JA, Papin JA (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4:e1000–e1086

    Google Scholar 

  35. Li L, Yokota H (2009) Application of Petri-nets in Bone Remodeling. Gene Regul Syst Biol 3:105–114

    CAS  Google Scholar 

  36. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    PubMed  CAS  Google Scholar 

  37. Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558

    Article  PubMed  CAS  Google Scholar 

  38. Maeda T, Tsai AYM, Saito H (1993) Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol 13:5408–5417

    PubMed  CAS  Google Scholar 

  39. Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  PubMed  CAS  Google Scholar 

  40. Mapes J, Ota IM (2004) Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway. EMBO J 23:302–311

    Article  PubMed  CAS  Google Scholar 

  41. Mattison CP, Ota IM (2000) Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 14:1229–1235

    PubMed  CAS  Google Scholar 

  42. Miermont A, Uhlendorf J, McClean M, Hersen P (2010) The dynamical systems properties of the hog signaling cascade. J Signal Transduct 2011: 1–12

  43. Mura I, Csikasz-Nagy A (2008) Stochastic Petri net extension of a yeast cell cycle model. J Theor Biol 254:850–860

    Article  PubMed  Google Scholar 

  44. de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–740

    Article  PubMed  Google Scholar 

  45. Natarajan K, Meyer MR, Jackson BM, David S, Christopher R, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  PubMed  CAS  Google Scholar 

  46. Oh MK, Liao JC (2000) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286

    Article  PubMed  CAS  Google Scholar 

  47. Oliveira R, Lages F, Silva-Graca M, Lucas C (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochim Biophys Acta 1613:57-7

    Article  PubMed  CAS  Google Scholar 

  48. ORourke S, Herskowitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15:532–542

    Article  CAS  Google Scholar 

  49. Pahlman AK, Granath K, Ansell R, Hohmann S, Adler L (2001) The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276:3555–3563

    Article  PubMed  CAS  Google Scholar 

  50. Parmar JH, Bhartiya S, Venkatesh KV (2009) A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress. Phys Biol 6:1–13

    Article  Google Scholar 

  51. Petri CA (1962) Kommunikation mit Automaten. Ph.D. thesis, Institut fur Instrumentelle Mathematik, Bonn

  52. Posas F, Saito H (1997) Activation of the yeast SSK2 MAPK kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17:1385–1394

    Article  Google Scholar 

  53. Posas F, Saito H (1998) Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17:1385–1394

    Article  PubMed  CAS  Google Scholar 

  54. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875

    Article  PubMed  CAS  Google Scholar 

  55. Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    Article  PubMed  CAS  Google Scholar 

  56. Reiser V, Ruis H, Ammerer G (1999) Kinase activity dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161

    PubMed  CAS  Google Scholar 

  57. Ren H, Wang X, Liu D, Wang B (2012) A glimpse of the yeast Saccharomyces cerevisiae responses to NaCl stress. Afr J Microbiol Res 6:713–718

    CAS  Google Scholar 

  58. Rep M (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor hot1p. Mol Cell Biol 19:5474–5485

    PubMed  CAS  Google Scholar 

  59. Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of S. cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    Article  PubMed  CAS  Google Scholar 

  60. Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485

    PubMed  CAS  Google Scholar 

  61. Ruths D, Muller M, Tseng JT, Nakhleh L, Ram PT (2008) TThe signaling Petri Net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PLoS Comput Biol 4:e1000,005

    Article  Google Scholar 

  62. Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7:482

    Article  PubMed  Google Scholar 

  63. Saito H (2001) Histidine phosphorylation and two-component signaling in eukaryotic cells. Chem Rev 101:2497–2509

    Article  PubMed  CAS  Google Scholar 

  64. Saito H, Tatebayashi K (2004) Regulation of the osmoregulatory HOG MAP cascade in yeast. J Biochem 136:267–272

    Article  PubMed  CAS  Google Scholar 

  65. Sato N, Kawahara H, Toh-e A, Maeda T (2003) Phosphorelay-regulated degradation of the yeast Ssk1p response regulator by the ubiquitin-proteasome system. Mol Cell Biol 23:6662–6671

    Article  PubMed  CAS  Google Scholar 

  66. Serge P (2011) Transient activation of the HOG MAPK pathway regulates bimodal gene expression. Science 332:732–735

    Article  Google Scholar 

  67. Sheikh-Hamad D, Gustin MC (2004) MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 287:F1102–F1110

    Article  PubMed  CAS  Google Scholar 

  68. Siddiqueea KAZ, Arauzo-Bravoa MJ, Shimizu K (2004) Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol Lett 235:25–33

    Article  Google Scholar 

  69. Simao E, Remy E, Thieffry D, Chaouiya C (2005) Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 21:ii190–ii196

    Article  PubMed  CAS  Google Scholar 

  70. Slaninova I, Sestak S, Svoboda A, Farkas V (2000) Cell wall and cytoskeleton reorganization as the response to hyperosmolarity shock in S. cerevisiae. Arch Micriobiol 173:245–252

    Article  CAS  Google Scholar 

  71. Somero GN, Yancey P (1997) Handbook of physiology. Oxford University Press, Oxford

    Google Scholar 

  72. Steggles LJ, Banks R, Shaw O, Wipat A (2007) Systems biology qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23:336–343

    Article  PubMed  CAS  Google Scholar 

  73. Tamasa MJ, Repa M, Theveleina JM, Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472:159–165

    Article  Google Scholar 

  74. Tao W, Deschenes RJ, Fassler JS (1999) IIntracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem 274:360–367

    Article  PubMed  CAS  Google Scholar 

  75. Vandenbola M, Jauniauxa JC, Grenson M (1989) Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83:153–159

    Article  Google Scholar 

  76. Wurgler-Murphy SM, Maeda T, Witten EA, Saito H (1997) Regulation of the Saccharomyces cerevisiae Hog1 mitogen activated protein kinase by the Ptp2 and Ptp3 protein tyrosine phosphatases. Mol Cell Biol 17:1289–1297

    PubMed  CAS  Google Scholar 

  77. Wurgler-Murphy SM, Saito H (1997) Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22:172–176

    Article  PubMed  CAS  Google Scholar 

  78. Wuytswinkel OV, Reiser V, Siderius M, Kelders MC, Ammerer G, Ruis H, Mager WH (2000) Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAPK kinase pathway. Mol Microbiol 37:382–397

    Article  PubMed  Google Scholar 

  79. Yaakov G, Bell M, Hohmann S, Engelberg D (2003) Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 23:4826–4840

    Article  PubMed  CAS  Google Scholar 

  80. Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007

    Article  CAS  Google Scholar 

  81. Zurawski R, Zhou M (1994) Petri-nets and industrial applications: a tutorial. IEEE Trans Ind Electron 41:567–583

    Article  Google Scholar 

Download references

Acknowledgement

Ms. Namrata Tomar, one of the authors, gratefully acknowledges CSIR, India for providing her a Senior Research Fellowship (9/93 (0145)/2, EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namrata Tomar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (72 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomar, N., Choudhury, O., Chakrabarty, A. et al. An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach. Mol Biol Rep 40, 1103–1125 (2013). https://doi.org/10.1007/s11033-012-2153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2153-3

Keywords

Navigation