Skip to main content
Log in

Toxicity of CdTe QDs with different sizes targeted to HSA investigated by two electrochemical methods

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

QDs have large scale application in many important areas with potential of unintentional exposure to the environment or organism during processing of a nanotechnology containing product’s life cycle. In this paper, two classical electrochemical methods, cyclic voltammetry and electrochemical impedance spectroscopy were applied to investigate the influence of particle sizes of CdTe QDs on their toxicity targeted to human serum albumin (HSA) under simulative physiological conditions. The results show that the toxicity of yellow emitting QDs (YQDs) on HSA is slightly stronger than that of the green-emitting (GQDs) and red-emitting QDs (RQDs). We also compared these two classical electrochemical methods with the traditional fluorescence spectroscopy through the above results. The electrochemical methods may be more accurate and comprehensive to investigate the toxicity of QDs at the biomacromolecular level under certain conditions, though fluorescence spectroscopy is simpler and more sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chan WC (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018. doi:10.1126/science.281.5385.2016

    Article  PubMed  CAS  Google Scholar 

  2. Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129:672–677. doi:10.1039/B404498N

    Article  PubMed  CAS  Google Scholar 

  3. Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111(5):3407–3432. doi:10.1021/cr1003166

    Article  PubMed  CAS  Google Scholar 

  4. Goy-López S, Juárez J, Alatorre-Meda M, Casals E, Puntes VF, Taboada P, Mosquera V (2012) Physicochemical characteristics of protein–NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 28(24):9113–9126. doi:10.1021/la300402w

    Google Scholar 

  5. Ejaz Ahmad, Gulam Rabbani, Nida Zaidi, Basir Ahmad, Hasan KR (2012) Pollutant-induced modulation in conformation and b-lactamase activity of human serum albumin. PLoS ONE 7(6):e38372. doi:10.1371/journal.pone.0038372.g001

    Article  Google Scholar 

  6. Sun H–H, Zhang J, Zhang Y-Z, Yang L-Y, Yuan L–L, Liu Y (2011) Interaction of human serum albumin with 10-hydroxycamptothecin: spectroscopic and molecular modeling studies. Mol Biol Rep 39(5):5115–5123. doi:10.1007/s11033-011-1307-z

    Article  PubMed  Google Scholar 

  7. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47. doi:10.1016/s1748-0132(08)70014-8

    Article  CAS  Google Scholar 

  8. Zhao L, Liu R, Zhao X, Yang B, Gao C, Hao X, Wu Y (2009) New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin. Sci Total Environ 407(18):5019–5023. doi:10.1016/j.scitotenv.2009.05.052

    Article  PubMed  CAS  Google Scholar 

  9. Xiao J, Chen L, Yang F, Liu C, Bai Y (2010) Green, yellow and red emitting CdTe QDs decreased the affinities of apigenin and luteolin for human serum albumin in vitro. J Hazard Mater 182(1–3):696–703. doi:10.1016/j.jhazmat.2010.06.088

    Article  PubMed  CAS  Google Scholar 

  10. Lu Z, Hu W, Bao H, Qiao Y, Li CM (2011) Interaction mechanisms of CdTe quantum dots with proteins possessing different isoelectric points. MedChemComm 2(4):283. doi:10.1039/c0md00237b

    Article  CAS  Google Scholar 

  11. Hu Y-J, Liu Y, Xiao X-H (2009) Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10(3):517–521. doi:10.1021/bm801120k

    Article  PubMed  CAS  Google Scholar 

  12. Zhou B, Zhang Z, Zhang Y, Li R, Xiao Q, Liu Y, Li Z (2009) Binding of cationic porphyrin to human serum albumin studied using comprehensive spectroscopic methods. J Pharm Sci 98(1):105–113. doi:10.1002/jps.21413

    Article  PubMed  CAS  Google Scholar 

  13. Xiao Q, Huang S, Qi Z-D, Zhou B, He Z-K, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta Proteins Proteomics 1784(7–8):1020–1027. doi:10.1016/j.bbapap.2008.03.018

    Google Scholar 

  14. Tian F–F, Li J-H, Jiang F-L, Han X-L, Xiang C, Ge Y-S, Li L–L, Liu Y (2012) The adsorption of an anticancer hydrazone by protein: an unusual static quenching mechanism. RSC Adv 2(2):501. doi:10.1039/c1ra00521a

    Article  CAS  Google Scholar 

  15. Liu S-Q, Cao M-L, Dong S-L (2008) Electrochemical and ultraviolet–visible spectroscopic studies on the interaction of deoxyribonucleic acid with vitamin B6. Bioelectrochemistry 74(1):164–169. doi:10.1016/j.bioelechem.2008.07.004

    Article  PubMed  CAS  Google Scholar 

  16. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein–nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637. doi:10.1021/cr100440g

    Article  PubMed  CAS  Google Scholar 

  17. Zou L, Gu Z, Zhang N, Zhang Y, Fang Z, Zhu W, Zhong X (2008) Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. J Mater Chem 18(24):2807. doi:10.1039/b801418c

    Article  CAS  Google Scholar 

  18. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  19. Erkkila KE, Odom DT, Barton JK (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99:2777–2795

    Article  PubMed  CAS  Google Scholar 

  20. Carter MT, Rodrigue M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(111) and iron(11) with 1, lO-phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

  21. Dorokhin D, Tomczak N, Reinhoudt DN, Velders AH, Vancso GJ (2010) Ferrocene-coated CdSe/ZnS quantum dots as electroactive nanoparticles hybrids. Nanotechnology 21(28):285703. doi:10.1088/0957-4484/21/28/285703

    Article  PubMed  Google Scholar 

  22. Xiao Y, Li CM, Liu Y (2007) Electrochemical impedance characterization of antibody–antigen interaction with signal amplification based on polypyrrole–streptavidin. Biosens Bioelectron 22(12):3161–3166. doi:10.1016/j.bios.2007.02.008

    Article  PubMed  CAS  Google Scholar 

  23. Tian F–F, Jiang F-L, Han X-L, Xiang C, Ge Y-S, Li J-H, Zhang Y, Li R, Ding X-L, Liu Y (2010) Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J Phys Chem B114(46):14842–14853. doi:10.1021/jp105766n

    Google Scholar 

  24. Silva MG, Helali S, Esseghaier C, Suarez CE, Oliva A, Abdelghani A (2008) An impedance spectroscopy method for the detection and evaluation of Babesia bovis antibodies in cattle. Sens Actuators B 135 (1):206–213. doi:10.1016/j.snb.2008.08.019

    Google Scholar 

  25. Zhang Y-Z, Zhang J, Li F–F, Xiang X, Ren AQ, Liu Y (2010) Studies on the interaction between benzophenone and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38(4):2445–2453. doi:10.1007/s11033-010-0380-z

    Article  PubMed  Google Scholar 

  26. Dzagli MM, Canpean V, Iosin M, Mohou MA, Astilean S (2010) Study of the interaction between CdSe/ZnS core-shell quantum dots and bovine serum albumin by spectroscopic techniques. J Photochem Photobiol A 215:(1):118–122. doi:10.1016/j.jphotochem.2010.08.008

    Google Scholar 

  27. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  PubMed  CAS  Google Scholar 

  28. Lehrer SS (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion*. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  29. Liang J, Cheng Y, Han H (2008) Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques. J Mol Struct 892(1–3):116–120. doi:10.1016/j.molstruc.2008.05.005

    Article  CAS  Google Scholar 

  30. Gelamo EL, Silva CHTP, Imasato H, Tabak M (2002) Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim Biophys Acta Protein Struct Mol Enzymol 1594:84–89

    Article  CAS  Google Scholar 

  31. Petitpas I (2001) Crystal structure analysis of warfarin binding to human serum albumin. Anatomy of drug site I. Biol Chem 276(25):22804–22809. doi:10.1074/jbc.M100575200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese 973 Program (NO: 2011CB933600), Fundamental Research Funds for Central Universities (1103005, 1101007), Program for Changjiang Scholars and Innovative Research Team in University (IRT1030), Fundamental Research Funds for the Central University (2012203020203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Lei Jiang or Yi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, ZQ., Lai, L., Li, DW. et al. Toxicity of CdTe QDs with different sizes targeted to HSA investigated by two electrochemical methods. Mol Biol Rep 40, 1009–1019 (2013). https://doi.org/10.1007/s11033-012-2142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2142-6

Keywords

Navigation