Skip to main content

Advertisement

Log in

Effect of PI3K gene silencing on growth, migration and related proteins expression of CD40 signal-mediated gastric cancer cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this study, we investigate effect of PI3K gene silencing on growth, migration and related proteins expression of CD40 signal-mediated gastric cancer cells. We observed that combination of sCD40L with PI3K siRNA could significantly inhibit AGS cells growth, block cells in G1 phase, and promote tumour cells apoptosis after 24 h treatment. Transwell test showed that numbers of cells per visual field in group PI3K siRNA or group sCD40L (after 24 h PI3K siRNA or sCD40L alone treatment) were fewer than that (32.54 ± 4.22) in control group. Numbers of cells per visual field in (after 24 h combination treatment of PI3K siRNA with sCD40L) were significantly fewer than that in group PI3K siRNA or group sCD40L. Compared with group sCD40L, expression level of Fas protein in group sCD40L + PI3K siRNA was significantly increased. The findings suggest that PI3K siRNA may strengthen CD40-induced specific antitumour effect via blocking PI3K/Akt signal pathway, resisting tumour immunoediting regulated by CD40 signal. Combination of sCD40L and PI3K siRNA is an important mechanism of gastric cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Bray F, Sankila R, Ferlay J, Parkin DM (2002) Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer 38:99–166

    Article  PubMed  CAS  Google Scholar 

  3. Nguyen VT, Benveniste EN (2000) Involvement of STAT-1 and ets family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. J Biol Chem 275:23674–23684

    Article  PubMed  CAS  Google Scholar 

  4. Krzesz R, Wagner AH, Cattaruzza M, Hecker M (1999) Cytokine-inducible CD40 gene expression in vascular smooth muscle cells is mediated by nuclear factor kappaB and signal transducer and activation of transcription-1. FEBS Lett 453:191–196

    Article  PubMed  CAS  Google Scholar 

  5. Schonbeck U, Libby P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58:4–43

    Article  PubMed  CAS  Google Scholar 

  6. Reinders ME, Sho M, Robertson SW, Geehan CS, Briscoe DM (2003) Proangiogenic function of CD40 ligand-CD40 interactions. J Immunol 171:1534–1541

    PubMed  CAS  Google Scholar 

  7. Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D, Akiyama M, Catley L, Hideshima T, Munshi NC, Treon SP, Anderson KC (2003) CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 101(7):2762–2769

    Article  PubMed  CAS  Google Scholar 

  8. Deregibus MC, Buttiglieri S, Russo S, Bussolati B, Camussi G (2003) CD40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem 278(20):18008–18014

    Article  PubMed  CAS  Google Scholar 

  9. Cai AQ, Landman KA, Hughes BD (2007) Multi-scale modeling of a wound-healing cell migration assay. J Theor Biol 245:576–594

    Article  PubMed  Google Scholar 

  10. Debeir O, Mégalizzi V, Warzée N, Kiss R, Decaestecker C (2008) Videomicroscopic extraction of specific information on cell proliferation and migration in vitro. Exp Cell Res 314:2985–2998

    Article  PubMed  CAS  Google Scholar 

  11. Vonderheide RH (2007) Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 13:1083–1088

    Article  PubMed  CAS  Google Scholar 

  12. Gallagher NJ, Eliopoulos AG, Agathangelo A, Oates J, Crocker J, Young LS (2002) CD40 activation in epithelial ovarian carcinoma cells modulates growth, apoptosis, and cytokine secretion. Mol Pathol 55:110–120

    Article  PubMed  CAS  Google Scholar 

  13. Davies CC, Mason J, Wakelam MJ, Young LS, Eliopoulos AG (2004) Inhibition of phosphatidylinositol 3-kinase- and ERK MAPK-regulated protein synthesis reveals the pro-apoptotic properties of CD40 ligation in carcinoma cells. J Biol Chem 279:1010–1019

    Article  PubMed  CAS  Google Scholar 

  14. Baxendale AJ, Dawson CW, Stewart SE, Mudaliar V, Reynolds G, Gordon J, Murray PG, Young LS, Eliopoulos AG (2005) Constitutive activation of the CD40 pathway promotes cell transformation and neoplastic growth. Oncogene 24:7913–7923

    Article  PubMed  CAS  Google Scholar 

  15. Sbih-Lammali F, Clausse B, Ardila-Osorio H, Guerry R, Talbot M, Havouis S, Ferradini L, Bosq J, Tursz T, Busson P (1999) Control of apoptosis in Epstein Barr virus-positive nasopharyngeal carcinoma cells: opposite effects of CD95 and CD40 stimulation. Cancer Res 59:924–930

    PubMed  CAS  Google Scholar 

  16. Yamaguchi H, Tanaka F, Sadanaga N, Ohta M, Inoue H, Mori M (2003) Stimulation of CD40 inhibits Fas- or chemotherapy-mediated apoptosis and increases cell motility in human gastric carcinoma cells. Int J Oncol 23:1697–1702

    PubMed  CAS  Google Scholar 

  17. Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, Wiltrout RH, Zörnig M, Lynch DH (2007) The CD95 receptor: apoptosis revisited. Cell 129:447–450

    Article  PubMed  CAS  Google Scholar 

  18. Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, Moody KS, Hobson MW, Jones A, Kolovou P, Karray S, Giani A, John SW, Chen DF, Marshak-Rothstein A, Ksander BR (2011) Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One 6(3):17659

    Article  Google Scholar 

  19. Lasham A, Lindridge E, Rudert F, Onrust R, Watson J (2000) Regulation of the human fas promoter by YB-1, Puralpha and AP-1 transcription factors. Gene 252:1–13

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823

    Article  PubMed  CAS  Google Scholar 

  21. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  PubMed  CAS  Google Scholar 

  22. Bedoya F, Meneu JC, Macías MI, Moreno A, Enríquez-de-Salamanca R, Gonzalez EM, Vegh I (2009) Mutation in CNR1 gene and VEGF expression in esophageal cancer. Tumori 95:68–75

    PubMed  CAS  Google Scholar 

  23. Inoue K, Ozeki Y, Suganuma Y, Sugiura Y, Tanaka S (1997) Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma: association with angiogenesis and tumor progression. Cancer 79:206–213

    Article  PubMed  CAS  Google Scholar 

  24. Bendardaf R, Buhmeida A, Hilska M, Laato M, Syrjänen S, Syrjänen K, Collan Y, Pyrhönen S (2008) VEGF-1 expression in colorectal cancer is associated with disease localization, stage, and longterm disease-specific survival. Anticancer Res 28:3865–3870

    PubMed  Google Scholar 

  25. Li YJ, Deng YJ, Wen G, Zhang XL (2009) Evaluation of angiogenesis in the tumorigenesis and progression of breast cancer. Zhonghua Wai Ke Za Zhi 47:519–522

    PubMed  Google Scholar 

  26. Bluff JE, Menakuru SR, Cross SS, Higham SE, Balasubramanian SP, Brown NJ, Reed MW, Staton CA (2009) Angiogenesis is associated with the onset of hyperplasia in human ductal breast disease. Br J Cancer 101:666–672

    Article  PubMed  CAS  Google Scholar 

  27. Gisterek I, Matkowki R, Lacko A, Sedlaczek P, Szewczyk K, Biecek P, Halon A, Staszek U, Szelachowska J, Pudelko M, Bebenek M, Harlozinska-Szmyrka A, Kornafel J (2010) Serum vascular endothelial growth factors A, C, and D in human breast tumors. Pathol Oncol Res 16:337–344

    Article  PubMed  CAS  Google Scholar 

  28. Mysliwiec P, Pawlak K, Kuklinski A, Kedra B (2008) Combined preoperative plasma endoglobin and VEGF-A assessment on colorectal cancer patients. Folia Histochem Cytobiol 46:487–492

    PubMed  Google Scholar 

  29. Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang L, Zhou J, Qiu SJ, Li Y, Ji XN, Liu H, Xia JL, Wu ZQ, Fan J, Ma ZC, Zhou XD, Lin ZY, Liu KD (2004) A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 130:187–196

    Article  PubMed  Google Scholar 

  30. Guo RP, Zhong C, Shi M, Zhang CQ, Wei W, Zhang YQ, Li JQ (2006) Clinical value of apoptosis and angiogenesis factors in estimating the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol 132:547–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 31270919) and the Natural Science Foundation of Jiangsu Province (BK2010231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Chen, WC., Pang, XQ. et al. Effect of PI3K gene silencing on growth, migration and related proteins expression of CD40 signal-mediated gastric cancer cells. Mol Biol Rep 40, 999–1008 (2013). https://doi.org/10.1007/s11033-012-2141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2141-7

Keywords

Navigation