Skip to main content

Advertisement

Log in

Porcine dorfin: molecular cloning of the RNF19 gene, sequence comparison, mapping and expression analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dorfin, encoded by the RNF19 gene, is a protein containing two RING finger motifs. Dorfin functions as an E3 ubiquitin ligase that interacts with UBE2L3/UBCH7 and UBE2E2/UBCH8, but not other ubiquitin-conjugating enzymes. Dorfin is found expressed in Lewy bodies, neuronal protein inclusions occurring in Parkinson’s disease brains. This work reports the cloning and analysis of the porcine (Sus scrofa) homologue of dorfin. The RNF19 cDNA encoding dorfin was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The porcine RNF19 cDNA codes for a protein of 838 amino acids which shows a very high similarity to human (97 %) and mouse (93 %) dorfin. The genomic organization of the porcine RNF19 gene is very similar to its human counterpart. Expression analysis by RT-PCR demonstrated that the porcine RNF19 transcript was observed in all organs and tissues examined, although differentially expressed. The highest expression of RNF19 mRNA was observed in cerebellum, heart, frontal cortex and muscle. RNF19 transcript was detected as early as 60 days of gestation in many different brain areas. Radiation hybrid mapping data indicate that the porcine RNF19 gene maps to chromosome 4 (4p11–p12). This particular map location is fully consistent with the currently known conservation of genome organization between human and pig and provides further confirmation that we have characterized the porcine homologue of the human RNF19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

bp:

Base pair

EST:

Expressed sequence tag

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

kb:

Kilobases

ORF:

Open reading frame

PCR:

Polymerase chain reaction

PD:

Parkinson’s disease

pI:

Isoelectric point

RT-PCR:

Reverse transcription PCR

SNP:

Single nucleotide polymorphism

UTR:

Untranslated region

References

  1. Lang AE, Lozano AM (1998) Parkinson’s disease, second of two parts. N Engl J Med 339:1130–1143

    Article  PubMed  CAS  Google Scholar 

  2. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  PubMed  CAS  Google Scholar 

  3. Hishikawa N, Niwa J, Doyu M, Ito T, Ishigaki S, Hashizume Y, Sobue G (2003) Dorfin localizes to the ubiquitylated inclusions in Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis. Am J Pathol 163:609–619

    Article  PubMed  CAS  Google Scholar 

  4. Ito T, Niwa J, Hishikawa N, Ishigaki S, Doyu M, Sobue G (2003) Dorfin localizes to Lewy bodies and ubiquitylates synphilin-1. J Biol Chem 278:29106–29114

    Article  PubMed  CAS  Google Scholar 

  5. Niwa J, Ishigaki S, Hishikawa N, Yamamoto M, Doyu M, Murata S, Tanaka K, Taniguchi N, Sobue G (2002) Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem 277:36793–36798

    Article  PubMed  CAS  Google Scholar 

  6. Niwa J, Ishigaki S, Doyu M, Suzuki T, Tanaka K, Sobue G (2001) A novel centrosomal ring-finger protein, dorfin, mediates ubiquitin ligase activity. Biochem Biophys Res Commun 281:706–713

    Article  PubMed  CAS  Google Scholar 

  7. Morett E, Bork P (1999) A novel transactivation domain in parkin. Trends Biochem Sci 24:229–231

    Article  PubMed  CAS  Google Scholar 

  8. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  9. Schwartz AL, Ciechanover A (2009) Targeting protein for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96

    Article  PubMed  CAS  Google Scholar 

  10. Ito E, Toki T, Ishihara H, Ohtani H, Gu L, Yokoyama M, Engel JD, Yamamoto M (1993) Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 362:466–468

    Article  PubMed  CAS  Google Scholar 

  11. Takeuchi H, Niwa J, Hishikawa N, Ishigaki S, Tanaka F, Doyu M, Sobue G (2004) Dorfin prevents cell death by reducing mitochondrial localizing mutant superoxide dismutase 1 in a neuronal cell model of familial amyotrophic lateral sclerosis. J Neurochem 89:64–72

    Article  PubMed  CAS  Google Scholar 

  12. Sone J, Niwa J, Kawai K, Ishigaki S, Yamada S, Adachi H, Katsuno M, Tanaka F, Doyu M, Sobue G (2010) Dorfin ameliorates phenotypes in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci Res 88:123–135

    Article  PubMed  CAS  Google Scholar 

  13. Huh JW, Kim DS, Ha HS, Lee JR, Kim YJ, Ahn K, Lee SR, Chang KT, Kim HS (2008) Cooperative exonization of MaLR and AluJo elements contributed an alternative promoter and novel splice variants of RNF19. Gene 424:63–70

    Article  PubMed  CAS  Google Scholar 

  14. Madsen LB, Thomsen B, Larsen K, Bendixen C, Holm IE, Fredholm M, Jørgensen AL, Nielsen AL (2007) Molecular characterization and temporal expression profiling of presenilins in the developing porcine brain. BMC Neurosci 8:72

    Article  PubMed  Google Scholar 

  15. Yerle M, Echard G, Robic A, Mairal A, Dubut-Fontana C, Raquel J, Pinton P, Milan D, Lahbib-Mansais Y, Gellin J (1996) A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet Cell Genet 73:194–202

    Article  PubMed  CAS  Google Scholar 

  16. Bjerre D, Madsen LB, Bendixen C, Larsen K (2006) Porcine parkin: molecular cloning of PARK2 cDNA, expression analysis, and identification of a splicing variant. Biochem Biophys Res Commun 347:803–813

    Article  PubMed  CAS  Google Scholar 

  17. Freemont PS (2000) RING for destruction? Curr Biol 10:R84–R87

    Article  PubMed  CAS  Google Scholar 

  18. Beasley SA, Hristova VA, Shaw GS (2007) Structure of the parkin inbetween-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson’s disease. Proc Natl Acad Sci USA 104:3095–3100

    Article  PubMed  CAS  Google Scholar 

  19. Marin I, Ferrus A (2002) Comparative genomics of the RBR family, including the Parkinson’s disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol 19:2039–2050

    Article  PubMed  CAS  Google Scholar 

  20. Capili AD, Edghill EL, Wu K, Borden KLB (2004) Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J Mol Biol 340:1117–1129

    Article  PubMed  CAS  Google Scholar 

  21. LaVoie HA (2003) The role of GATA in mammalian reproduction. Exp Biol Med 228:1282–1290

    CAS  Google Scholar 

  22. Vingborg RK, Gregersen VR, Zhan B, Panitz F, Høj A, Sørensen KK, Madsen LB, Larsen K, Hornshøj H, Wang X, Bendixen C (2009) A robust linkage map of the porcine autosomes based on gene-associated SNPs. BMC Genomics 27(10):134

    Article  Google Scholar 

  23. Rink A, Santschi EM, Eyer KM, Roelofs B, Hess M, Godfrey M, Karajusuf EK, Yerle M, Milan D, Beattie CW (2002) A first-generation EST RH comparative map of the porcine and human genome. Mamm Genome 13:578–587

    Article  PubMed  CAS  Google Scholar 

  24. Meyers SN, Rogatcheva MB, Larkin DM, Yerle M, Milan D, Hawken RJ, Schook LB, Beever JE (2005) Piggy-BACing the human genome II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics 86:739–752

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Martine Yerle of INRA Toulouse, France for providing the pig-rodent hybrid panel. The authors wish to thank Connie Jakobsen Juhl for excellent technical assistance, and Ms. Janne Hansen for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knud Larsen.

Additional information

The sequence of the porcine RNF19 cDNA, encoding the dorfin protein, and the genomic sequences of RNF19 have been submitted to DDBJ/EMBL/GenBank under the accessions numbers DQ090004, DQ091175, DQ091176, JQ031558 and JQ063125, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 322 kb)

Supplementary material 2 (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, K., Madsen, L.B. & Bendixen, C. Porcine dorfin: molecular cloning of the RNF19 gene, sequence comparison, mapping and expression analysis. Mol Biol Rep 39, 10053–10062 (2012). https://doi.org/10.1007/s11033-012-1874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1874-7

Keywords

Navigation