Skip to main content

Advertisement

Log in

Effects of retrograde gene transfer of brain-derived neurotrophic factor in the rostral spinal cord of a compression model in rat

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recovery after spinal cord injury (SCI) is rare in humans and experimental animals. Following SCI in adults, changes in gene expression and the regulation of these genes are associated with the pathological development of the injury. High levels of brain-derived neurotrophic factor (BDNF) in the injury area during the post-injury period contribute to enhanced neuroprotection and axonal regeneration. Intervention at the level of gene regulation has the potential to promote SCI repair. In this study, the injection of adenovirus-mediated BDNF in the lesion area (rostral spinal cord) up-regulated the expression of BDNF in the injury zone of a compression model in rat, thereby protecting neurons and enhancing behavioral function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Referrences

  1. Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436

    Article  PubMed  Google Scholar 

  2. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4:451–464

    Article  PubMed  Google Scholar 

  3. Zhao T, Qi Y, Li Y, Xu K (2011) PI3 kinase regulation of neural regeneration and muscle hypertrophy after spinal cord injury. Mol Biol Rep. doi:10.1007/s11033-011-1127-1

  4. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22:89–101

    Article  PubMed  CAS  Google Scholar 

  5. Song G, Cechvala C, Resnick DK, Dempsey RJ, Rao VL (2001) GeneChip analysis after acute spinal cord injury in rat. J Neurochem 79:804–815

    Article  PubMed  CAS  Google Scholar 

  6. Zhou L, Shine HD (2003) Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. J Neurosci Res 74:221–226

    Article  PubMed  CAS  Google Scholar 

  7. Namiki J, Kojima A, Tator CH (2000) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17:1219–1231

    Article  PubMed  CAS  Google Scholar 

  8. Hiebert GW, Khodarahmi K, McGraw J, Steeves JD, Tetzlaff W (2002) Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J Neurosci Res 69:160–168

    Article  PubMed  CAS  Google Scholar 

  9. Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K (2006) BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129:1534–1545

    Article  PubMed  CAS  Google Scholar 

  10. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277

    Article  PubMed  CAS  Google Scholar 

  11. Novikova LN, Novikov LN, Kellerth JO (2000) Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci 12:776–780

    Article  PubMed  CAS  Google Scholar 

  12. Kishino A, Ishige Y, Tatsuno T, Nakayama C, Noguchi H (1997) BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp Neurol 144:273–286

    Article  PubMed  CAS  Google Scholar 

  13. Emborg ME, Kordower JH (2000) Delivery of therapeutic molecules into the CNS. Prog Brain Res 128:323–332

    Article  PubMed  CAS  Google Scholar 

  14. Xu K, Uchida K, Nakajima H, Kobayashi S, Baba H (2006) Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression. Spine (Phila Pa 1976) 31:1867–1874

    Article  Google Scholar 

  15. Kwon BK, Liu J, Lam C, Plunet W, Oschipok LW, Hauswirth W et al (2007) Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine (Phila Pa 1976) 32:1164–1173

    Article  Google Scholar 

  16. Alto LT, Havton LA, Conner JM, Hollis Ii ER, Blesch A, Tuszynski MH (2009) Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12:1106–1113

    Article  PubMed  CAS  Google Scholar 

  17. Carmel JB, Galante A, Soteropoulos P, Tolias P, Recce M, Young W et al (2001) Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics 7:201–213

    PubMed  CAS  Google Scholar 

  18. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454–468

    Article  PubMed  Google Scholar 

  19. Nakajima H, Uchida K, Kobayashi S, Kokubo Y, Yayama T, Sato R et al (2005) Targeted retrograde gene delivery into the injured cervical spinal cord using recombinant adenovirus vector. Neurosci Lett 385:30–35

    Article  PubMed  CAS  Google Scholar 

  20. Nakajima H, Uchida K, Yayama T, Kobayashi S, Guerrero AR, Furukawa S et al (2010) Targeted retrograde gene delivery of brain-derived neurotrophic factor suppresses apoptosis of neurons and oligodendroglia after spinal cord injury in rats. Spine (Phila Pa 1976) 35:497–504

    Article  Google Scholar 

  21. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    PubMed  CAS  Google Scholar 

  22. Widenfalk J, Lundstromer K, Jubran M, Brene S, Olson L (2001) Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 21:3457–3475

    PubMed  CAS  Google Scholar 

  23. Ikeda O, Murakami M, Ino H, Yamazaki M, Nemoto T, Koda M et al (2001) Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol 102:239–245

    PubMed  CAS  Google Scholar 

  24. Nakamura M, Bregman BS (2001) Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol 169:407–415

    Article  PubMed  CAS  Google Scholar 

  25. Gulino R, Lombardo SA, Casabona A, Leanza G, Perciavalle V (2004) Levels of brain-derived neurotrophic factor and neurotrophin-4 in lumbar motoneurons after low-thoracic spinal cord hemisection. Brain Res 1013:174–181

    Article  PubMed  CAS  Google Scholar 

  26. Qin DX, Zou XL, Luo W, Zhang W, Zhang HT, Li XL et al (2006) Expression of some neurotrophins in the spinal motoneurons after cord hemisection in adult rats. Neurosci Lett 410:222–227

    Article  PubMed  CAS  Google Scholar 

  27. Hajebrahimi Z, Mowla SJ, Movahedin M, Tavallaei M (2008) Gene expression alterations of neurotrophins, their receptors and prohormone convertases in a rat model of spinal cord contusion. Neurosci Lett 441:261–266

    Article  PubMed  CAS  Google Scholar 

  28. Kasahara K, Nakagawa T, Kubota T (2006) Neuronal loss and expression of neurotrophic factors in a model of rat chronic compressive spinal cord injury. Spine (Phila Pa 1976) 31:2059–2066

    Article  Google Scholar 

  29. Gerin CG, Madueke IC, Perkins T, Hill S, Smith K, Haley B et al (2011) Combination strategies for repair, plasticity and, regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 65:1255–1281

    Article  PubMed  CAS  Google Scholar 

  30. Blesch A (2004) Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods 33:164–172

    Article  PubMed  CAS  Google Scholar 

  31. Hendriks WT, Ruitenberg MJ, Blits B, Boer GJ, Verhaagen J (2004) Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res 146:451–476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Weiping Chen and Dr. Xiang Zhao for their assistance in animal experiments and in the scoring. Project supported by the National Natural Science Foundation of China (Grant No. 30901531) and the Natural Science Foundation of Zhejiang, China (Grant No. Y207216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuesong Dai or Kan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, T., Li, Y., Dai, X. et al. Effects of retrograde gene transfer of brain-derived neurotrophic factor in the rostral spinal cord of a compression model in rat. Mol Biol Rep 39, 8045–8051 (2012). https://doi.org/10.1007/s11033-012-1651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1651-7

Keywords

Navigation