Skip to main content

Advertisement

Log in

Neuroectodermal stem cells: A remyelinating potential in acute compressed spinal cord injury in rat model

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The outcomes of compressed spinal cord injury (CSCI) necessitate radical treatment. The therapeutic potential of neuroectodermal stem cells (NESCs) in a rat model of CSCI in acute and subacute stages was assessed. White Wistar rat were divided into control, sham-operated, CSCI untreated model, CSCI grafted with NESCs at 1 day after CSCI, and at 7 days after CSCI. Primary NESC cultures were prepared from brains of embryonic day 10 (E10) mice embryos. NESCs were transplanted at the site of injury using a Hamilton syringe. Locomotor functional assessment, routine histopathology, immunostaining for (GFAP), and ultrastructure techniques for evaluating the CSI were conducted. In CSCI, areas of hemorrhage, cavitation, reactive astrocytosis, upregulated GFAP expression of immunostained areas, degeneration of the axoplasm and demyelination were observed. One day after grafting with NESCs, a decrease in astrocyte reaction and pathological features, quantitative and qualitative enhancement of remyelination and improved locomotor activity were observed. Treatment with NESCs at 7 days after CSCI did not mitigatethe reactive astrocytosis and glial scar formation that hindered the ability of the NESCs to enhance remyelination of axons. In conclusion, the microenvironment and time of NESCs transplantation affect activity of astrocytes and remyelination of axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Afsari ZH, Renno WM and Abd-El-Basset E 2008 Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats. Anat. Rec. 291 390–399

    Article  CAS  Google Scholar 

  • Akdemir HU, Aygün D, Katı C, Altuntaş M, and Çokluk C 2013 Three-year experience in the Emergency Department: the approach to patients with spinal trauma and their prognosis. Ulus Travma Acil. Cerr. Derg. 19 441–448

    Article  Google Scholar 

  • Akhtar AZ, Pippin JJ and SanduskyCB 2008 Animal models in spinal cord injury: A review. Rev. Neurosci. 19 47–60

    Article  Google Scholar 

  • Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ and Cummings BJ 2011Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient. Regen. Med6 367–406

    Article  Google Scholar 

  • Araujo MR, Carvalho PH, de Paula TS, Okano BS, Del Carlo RJ, Novaes RD, da Cunha DNQ and Neves CA 2016 Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats. Semina Ciencias Agrarias 37 1355–1368

    Article  Google Scholar 

  • Bancroft JD and Gamble M 2008 Hematoxylin and eosin, connective tissue and stain, carbohydrates; in Theory and practice in histological techniques 6th ed (Churchill-Livingstone, Edin-burgh) pp 121–186

  • Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I, Dimou L and Gotz M 2013 Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci. 16 580–586

    Article  CAS  Google Scholar 

  • Basso DM, Beattie MS and Bresnahan DK 1995 A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 12 1–22

    Article  CAS  Google Scholar 

  • Blight AR 1983 Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling. Neuroscience 10 521–543

    Article  CAS  Google Scholar 

  • Boyd ZS, Kriatchko A, Yang J, Agarwal N, Wax MB and Patil RV2003 Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest. Ophthalmol. Vis Sci .44 5206–5211

    Article  Google Scholar 

  • Bozzola JJ and Russel LD 1998 Electron microscopy: principles and techniques for biologists 2nd ed. (Jones and Bartlet Publishers Sudbury)

  • Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P and Whittemore SR 2001 pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp. Neurol. 1 6748–6758

    Google Scholar 

  • Cheriyan T, Ryan DJ, Weinre JH, Cheriyan J, Paul JC, Lafage V, Kirsch T and Errico TJ 2014 Spinal cord injury models: a review. Spinal Cord 52 588–595

    Article  CAS  Google Scholar 

  • Corley S M, Ladiwala U, Besson A and Yong VW 2001 Astrocytes attenuate oligodendrocyte death in vitro through an alpha(6) integrin-laminin-dependent mechanism. Glia 36 281–294

    Article  CAS  Google Scholar 

  • Cullheim S and Thams S 2007 The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res. Rev. 55 89–96

    Article  CAS  Google Scholar 

  • Dimou L and Gotz M 2014 Glial cells as progenitors and stem cells: New roles in the healthy and diseased brain. Physiol. Rev. 94 709–737

    Article  CAS  Google Scholar 

  • Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB and Dumont AS 2001 Acute spinal cord injury, Part I: Pathophysiologic mechanisms. Clin. Neuropharmacol. 24 254–264

    Article  CAS  Google Scholar 

  • Eddleston M and Mucke L 1993 Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience 54 15–36

    Article  CAS  Google Scholar 

  • English D, Sharma NK, Sharma K and Anand A 2013 Neural stem cells-trends and advances. J. Cell Biochem114 764–772

    Article  CAS  Google Scholar 

  • Faulkner JR Herrmann JE, Woo MJ, Tansey KE, Doan NB and Sofroniew MV 2004 reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24 2143–2155

    Article  CAS  Google Scholar 

  • Gage FH 2000 Mammalian neural stem cells. Science 287 1433–1438

    Article  CAS  Google Scholar 

  • Guest JD, Hiester ED and Bunge RP 2005 Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol. 192 384–393

    Article  CAS  Google Scholar 

  • Hashish HA 2015 Alteration of glial fibrillary acidic protein immunoreactivity in astrocytes of the cerebellum of diabetic rats and potential effect of insulin and ginger Anat Physiol. 5 https://doi.org/10.4172/2161-0940.1000167

  • Horky LL, Galimi F, Gage FH and Horner PJ 2006 Fate of endogenous Stem / progenitor cells following spinal cord injury. J. Comp. Neurol. 498 525–538

    Article  Google Scholar 

  • Jackson CA, Messinger J, Peduzzi JD, Ansardi DC and Morrow CD2005 Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10. Virology 33 6173–6183

    Google Scholar 

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K and Steward O 2005 Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci19 4694–4705

    Article  Google Scholar 

  • Kitani H, Shiurba R, Sakakura T and Tomooka Y 1991 Isolation and characterization of mouse neural precursor cells in primary culture. In Vitro Cell Dev. Biol. 86 615–624

    Google Scholar 

  • Kumamaru H, Ohkawa Y, Saiwai H, Yamada H, Kubota K, Kobayakawa K, Akashi K, okano H, Iwamoto Y and Okada S 2013 Direct isolation and RNA-seqreveal environment-dependent properties of engrafted neural stem/ progenitor cells. Nat. Commun. 3 11–40

  • Kumamaru H, Saiwai H, Ohkawa Y, Yamada H, Iwamoto Y and Okada S 2012 Age- related differences in cellular and molecular profiles of inflammatory responses after spinal cord injury. J. Cell Physiol. 227 1335–1346

    Article  CAS  Google Scholar 

  • Kwok JC, Afshari F, García-Alías G and Fawcett JW 2008 Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor. Neurol. Neurosci. 26 131–145

    PubMed  Google Scholar 

  • Li N and Leung GK 2015 Oligodendrocyte Precursor Cells in Spinal Cord Injury: A review and update. Biomed. Res. Int. ID 235195

    Google Scholar 

  • Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS and Erceg S 2015 Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells 33 1036–1041

    Article  Google Scholar 

  • McKinley WO, Jackson AB, Cardenas DD and DeVivo MJ 1999 Long-term medical complications after traumatic spinal cord injury: a regional model systems analysis. Arch. Phys. Med. Rehabil80 1402–1410

    Article  CAS  Google Scholar 

  • Metz GA, Merkler D, Dietz V, Schwab ME and Fouad K 2000 Efficient testing of motor function in spinal cord injured rats. Brain Res. 883 165–177

    Article  CAS  Google Scholar 

  • Mortazavia MM, Jabera M, Adeebad N, Deepa A, Hosea N, Rezaeia M, Salman FA, Katebac B, Likerd RMA and Tubbsb S 2015 Engraftment of neural stem cells in the treatment of spinal cord injury. Translational Res. Anat. 1 11–16

    Article  Google Scholar 

  • Myers J, Lee M and Kiratli J 2007 Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am. J. Phys. Med. Rehabil. 86 142–152

    Article  Google Scholar 

  • Okada S, Hara M, Kobayakawa, K, Matsumoto Y and Nakashima Y 2017 Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci. Res. 17 30592–30598

    Google Scholar 

  • Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, Iwamoto Y, Nakamura M, Miyoshi H, Okano HJ, Contag CH, Toyama Yand Okano H 2005 In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J. 19 1839–1841

    Article  CAS  Google Scholar 

  • Pajenda G, Pajer K, Márton G, Hegyi P, Redl H, Nógrádi A 2013 Rescue of injured motoneurones by grafted neuroectodermal stem cells: effect of the location of graft. Restor. Neurol. Neurosci. 31 263–274

    CAS  PubMed  Google Scholar 

  • Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong, VW, Stys PK and Tetzlaff W 2014 remyelination after spinal cord injury: is it a target for repair? Prog. Neurobiol. 117 54–72

    Article  CAS  Google Scholar 

  • Rahimi-Movaghar V, Sayyah MK, Akbari H, Khorramirouz R, Rasouli MR, Moradi-Lakeh M, Shokraneh F and Vaccaro AR 2013 Epidemiology of traumatic spinal cord injury in developing countries: a systematic review. Neuroepidemiology 41 65–85

    Article  Google Scholar 

  • Ramadan WS, Abdel-Hamid GA, Al-Karim S and Abbas AT 2017 Histological, immune histochemical and ultrastructural study of secondary compressed spinal cord injury in a rat model. Folia Histochem. Cytobiol55 11–20

    Article  CAS  Google Scholar 

  • Silva NA, Sousa N, Reis RL, and Salgado AJ 2014 From basics to clinical: A comprehensive review on spinal cord injury. Prog. Neurobiol114 25–57

    Article  Google Scholar 

  • Silver J and Miller JH 2004 Regeneration beyond the glial scar. Nat. Rev. Neurosci. 51 46–56

    Google Scholar 

  • Sofroiew MV 2009 Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32 638–647

    Article  Google Scholar 

  • Tatem KS, Quinn JL, Phadke A, Yu Q, Gordish- Dressman H and Nagaraju K 2014 behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J. Vis. Exp. 29 https://doi.org/10.3791/51785

    Article  PubMed  PubMed Central  Google Scholar 

  • van Weert KC, Schouten EJ, Hofstede J, van de Meent H, Holtslag HR and van den Berg-Emons RJ 2014 Acute phase complications following traumatic spinal cord injury in Dutch level 1 trauma centres. J. Rehab. Med46 882–885

    Article  Google Scholar 

  • Willerth SM 2011 Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Res. Ther. 2 17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. 10/248/1433.The authors acknowledge, with thanks (DSR), King Abdulaziz University, Jeddah, for the financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafaa S Ramadan.

Additional information

Communicated by GEETA VEMUGANTI.

Corresponding editor: Geeta Vemuganti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, W.S., Abdel-Hamid, G.A., Al-Karim, S. et al. Neuroectodermal stem cells: A remyelinating potential in acute compressed spinal cord injury in rat model. J Biosci 43, 897–909 (2018). https://doi.org/10.1007/s12038-018-9812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9812-z

Keywords

Navigation