Skip to main content
Log in

BcNRT1, a plasma membrane-localized nitrate transporter from non-heading Chinese cabbage

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A nitrate transporter, BcNRT1, was isolated from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) cultivar ‘Suzhouqing’. The full-length cDNA was obtained using the rapid amplification of cDNA ends technique and contains an open reading frame of 1,770 bp that predicts a protein of 589 acid residues that possesses 12 putative transmembrane domains. Using the GUS marker gene driven by the BcNRT1 promoter, we found BcNRT1 expression to be concentrated in primary and lateral root tips and in shoots of transgenic Arabidopsis plants. The YFP fused to BcNRT1 and transformed into cabbage protoplasts indicated that BcNRT1 was localized to the plasma membrane. The expression of BcNRT1 in roots was induced by exposure to 25 mM nitrate, and the BcNRT1 cRNA heterologously expressed in Xenopus laevis oocytes showed nitrate conductance when nitrate was included in the medium. Moreover, mutant chl1-5 plants harboring 35S::BcNRT1 showed sensitivity to chlorate treatment and exhibited restored nitrate uptake. In conclusion, the results indicate that BcNRT1 functions as a low affinity nitrate transporter in non-heading Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gangolli SD, van den Brandt PA, Feron VJ, Janzowsky C, Koeman JH, Speijers GJ, Spiegelhalder B, Walker R, Wisnok JS (1994) Nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol 292:1–38. doi:10.1016/0926-6917(94)90022-1

    PubMed  CAS  Google Scholar 

  2. Mensinga TT, Speijers GJA, Meulenbelt J (2003) Health implications of exposure to environmental nitrogenous compounds. Toxicol Rev 22:41–51. doi:10.2165/00139709-200322010-00005

    Article  PubMed  CAS  Google Scholar 

  3. Alexander J, Benford D, Cockburn A et al (2008) Nitrate in vegetables. The EFSA J 689:1–79

    Google Scholar 

  4. Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17. doi:10.1002/jsfa.2351

    Article  CAS  Google Scholar 

  5. Pasda G, Hahnldel R, Zerulla W (2001) Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agriculture and horticultural crops. Biol Fertil Soil 34:85–97. doi:10.1007/s003740100381

    Article  CAS  Google Scholar 

  6. Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signaling. J Exp Bot 58:2297–2306. doi:10.1093/jxb/erm066

    Article  PubMed  CAS  Google Scholar 

  7. Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395. doi:10.1016/S1360-1385(98)01311-9

    Article  Google Scholar 

  8. Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713. doi:10.1016/0092-8674(93)90399-B

    Article  PubMed  CAS  Google Scholar 

  9. Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phase of nitrate uptake. Plant Cell 11:865–874. doi:10.1105/tpc.11.5.865

    Google Scholar 

  10. Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194. doi:10.1016/j.cell.2009.07.004

    Article  PubMed  CAS  Google Scholar 

  11. Guo FQ, Wang R, Chen M, Crawford NM (2001) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1(CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell 13:1761–1777. doi:10.1105/tpc.13.8.1761

    Google Scholar 

  12. Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tasy YF (2004) Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol 45:1139–1148. doi:10.1093/pcp/pch143

    Article  PubMed  CAS  Google Scholar 

  13. Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528. doi:10.1105/tpc.108.060244

    Article  PubMed  CAS  Google Scholar 

  14. Almagro A, Lin SH, Tsay YF (2008) Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 20:3289–3299. doi:10.1105/tpc.107.056788

    Article  PubMed  CAS  Google Scholar 

  15. Fan SC, Lin CS, Lin SH, Hsu PK, Tsay YF (2009) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21:2750–2761. doi:10.1105/tpc.109.067603

    Article  PubMed  CAS  Google Scholar 

  16. De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2009) CLC-mediated anion transport in plant cells. Philos Trans R Soc Lond B Biol Sci 364:195–201. doi:10.1098/rstb.2008.0128

    Article  PubMed  Google Scholar 

  17. Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235. doi:10.1016/S0005-2736(00)00140-1

    Article  PubMed  CAS  Google Scholar 

  18. Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300. doi:10.1016/j.febslet.2007.04.047

    Article  PubMed  CAS  Google Scholar 

  19. Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedelel F (2010) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62:1349–1359. doi:10.1093/jxb/erq409

    Article  PubMed  Google Scholar 

  20. Zhou JJ, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273:12017–12023. doi:10.1074/jbc.273.20.12017

    Article  PubMed  CAS  Google Scholar 

  21. Lauter FR, Ninnemann O, Bucher M (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci USA 93:8139–8144. doi:10.1073/pnas.93.15.8139

    Article  PubMed  CAS  Google Scholar 

  22. West CE, Waterworth WM, Stephens SM, Bray CM (1998) Cloning and functional characterisation of a peptide transporter expressed in the scutellum of barley grain during the early stages of germination. Plant J 15:221–229. doi:10.1046/j.1365-313X.1998.00199.x

    Article  PubMed  CAS  Google Scholar 

  23. Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol 122:379–388. doi:10.1104/pp.122.2.379

    Article  PubMed  CAS  Google Scholar 

  24. Paulsen IT, Skurray RA (1994) The POT family of transport proteins. Trends Biochem Sci 19:404. doi:10.1016/0968-0004(94)90087-6

    Article  PubMed  CAS  Google Scholar 

  25. Steiner HK, Naider F, Becker JM (1995) The PTR family: a new group of peptide transporters. Mol Microbiol 16:825–834. doi:10.1111/j.1365-2958.1995.tb02310.x

    Article  PubMed  CAS  Google Scholar 

  26. Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1:235–239. doi:10.1016/S1369-5266(98)80110-6

    Article  PubMed  CAS  Google Scholar 

  27. Bartsch H, Ohshima H, Pignatelli B (1988) Inhibitors of endogenous nitrosation: mechanisms and implications in human cancer prevention. Mutat Res 202:307–324. doi:10.1016/0027-5107(88)90194-7

    Article  PubMed  CAS  Google Scholar 

  28. Li Q, Wang XF, Ma LY, Wei M, Shi QH, Yang FJ (2011) Molecular characterization of a cucumber nitrate reductase (CsNR) gene under NO3 stress. Mol Biol Rep doi: 10.1007/s11033-011-1215-2

  29. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273. doi:10.1016/j.pbi.2009.12.003

    Article  PubMed  CAS  Google Scholar 

  30. Okamoto M, Vidmar JJ, Glass ADM (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–317. doi:10.1093/pcp/pcg036

    Article  PubMed  CAS  Google Scholar 

  31. Redinbaugh MG, Campbell WH (1991) Higher plant responses to environmental nitrate. Physiol Plant 82:640–650. doi:10.1111/j.1399-3054.1991.tb02958.x

    Article  CAS  Google Scholar 

  32. Siddiqi MY, Glass ADM, Ruth TJ, Fernando M (1989) Studies of the regulation of nitrate influx by barely seedlings using 13NO −13 . Plant Physiol 90:806–813. doi:10.1104/pp.90.3.806

    Article  PubMed  CAS  Google Scholar 

  33. Martinoia E, Wieken A (1981) Vacuoles as storage compartments for nitrate in barley leaves. Nature 289:292–294. doi:10.1038/289292a0

    Article  CAS  Google Scholar 

  34. Beeckman T, Friml J (2010) Nitrate contra auxin: nutrient sensing by roots. Dev Cell 18:877–878. doi:10.1016/j.devcel.2010.05.020

    Article  PubMed  CAS  Google Scholar 

  35. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937. doi:10.1016/j.devcel.2010.05.008

    Article  PubMed  CAS  Google Scholar 

  36. Laskowski M, Grieneisen VA, Hofhuis H, Hove CAT, Hogeweg P et al (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:e307. doi:10.1371/journal.pbio.0060307

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Guohua Xu and Pro. Xiaorong Fan (College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China) for helping with experiment on Xenopus laevis oocytes, to Shanhua Lin (Institute of Molecular Biology, Academia Sinica, Taiwan, ROC) for kindly providing the mutants chl1-5 and identifying membrane proteins. We also thank Prof. F. R. Gu (College of Foreign Studies, NAU) for language editing of this manuscript. This work was supported by the earmarked fund for Modern Agro-industry Technology Research System (Nycytx-35-gw12) and the National Science and Technology Support Program (2009BADB8B03-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Hou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Sun, F., Xiong, A. et al. BcNRT1, a plasma membrane-localized nitrate transporter from non-heading Chinese cabbage. Mol Biol Rep 39, 7997–8006 (2012). https://doi.org/10.1007/s11033-012-1646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1646-4

Keywords

Navigation