Skip to main content
Log in

cDNA cloning and differential expression patterns of ascorbate peroxidase during post-harvest in Brassica rapa L.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ascorbate is an antioxidant and a cofactor of many dioxygenases in plant and animal cell metabolism. A well-recognized enzyme consuming ascorbate is ascorbate peroxidase (APX), which catalyses the reduction of hydrogen peroxide to water with the simultaneous oxidation of ascorbate with a high specificity. The isolation and characterisation of new Apx cDNAs, could provide new insights about the physiological roles and regulation of these enzymes. In this work chloroplastic (Br-chlApx) and cytosolic (Br-cApx) isoform transcripts were isolated by RT-PCR in Brassica rapa and expression changes were analysed by semi-quantitative RT-PCR performed in different tissues (layer, stalk and florets) at different days (0, 4 and 14 day). The result showed that BrApx isoforms were differentially expressed and the Br-chlApx, in particular in the layer, had the highest expression level and remained unchanged also after 14 day after harvest. In addition, expression changes were compared with total BrAPX activity and the results showed that the activity decreased in all tissues at 14 day after harvest, independently of transcripts. Finally, additional solutes as the substrate of APX ascorbate and its oxidized form, dehydroascorbate, as well as α-tocopherol, the major vitamin E compound that prevents the propagation of lipid peroxidation in thylakoid membranes, were followed. The changes in the BrApx expression, BrAPX activity and metabolites can provide further evidence of the close relationships that exist between antioxidants which compensate for each other and suggest that there are multiple sites of reciprocal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  2. Whitaker JR (1994) Principles of enzymology for the food sciences, 2nd edn. Dekker, New York, pp 183–192

    Google Scholar 

  3. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  4. Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc B 355:1455–1464

    Article  CAS  Google Scholar 

  5. Nishikawa F, Kato M, Hyodo H, Ikoma Y, Sugiura M, Yano M (2003) Ascorbate metabolism in harvested broccoli. J Exp Bot 54:2439–2448

    Article  PubMed  CAS  Google Scholar 

  6. Nishikawa F, Kato M, Hyodo H, Ikoma Y, Sugiura M, Yano M (2005) Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. J Exp Bot 56:65–72

    PubMed  CAS  Google Scholar 

  7. Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  8. Orvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11:1297–1305

    Article  CAS  Google Scholar 

  9. Chaudière J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949–962

    Article  PubMed  Google Scholar 

  10. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y et al (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  11. Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M et al (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genomics 279:171–182

    Article  PubMed  CAS  Google Scholar 

  12. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  CAS  Google Scholar 

  13. Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761–770

    Article  PubMed  CAS  Google Scholar 

  14. Kubo A, Saji H, Tanaka K, Kondo N (1995) Expression of arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol Biol 29:479–489

    Article  PubMed  CAS  Google Scholar 

  15. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  16. Vansuyt G, Lopez F, Inze D, Briat JF, Fourcroy P (1997) Iron triggers a rapid induction of scorbate peroxidase gene expression in Brassica napus. FEBS Lett 410:195–200

    Article  PubMed  CAS  Google Scholar 

  17. Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in arabidopsis. Plant Physiol 129:838–853

    Article  PubMed  CAS  Google Scholar 

  18. Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of arabidopsis leaves. Plant J 33:691–705

    Article  PubMed  CAS  Google Scholar 

  19. Yamaguchi K, Mori H, Nishimura M (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in Pumpkin. Plant Cell Physiol 36:1157–1162

    PubMed  CAS  Google Scholar 

  20. Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase: a prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598

    Article  PubMed  CAS  Google Scholar 

  21. Moreno DA, Carvajal M, López-Berenguer C, García-Viguera C (2006) Chemical and biological characterization of nutraceutical compounds of broccoli. J Pharm Biomed Anal 41:1508–1522

    Article  PubMed  CAS  Google Scholar 

  22. Zhou C, Poulton EJ, Grun F, Bammler TK, Blumberg B, Thummel KE et al (2007) The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol 71:220–229

    Article  PubMed  CAS  Google Scholar 

  23. Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Tec 20:207–220

    Article  CAS  Google Scholar 

  24. Toivonen PMA, Sweeney M (1998) Differences in chlorophyll loss at 13°C for two broccoli cultivars associated with antioxidant enzyme activities. J Agric Food Chem 46:20–24

    Article  PubMed  CAS  Google Scholar 

  25. Pogson BJ, Downs CG, Davies KM (1995) Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiol 108:651–657

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook J, Frithsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Lab, Cold Spring Harbour

    Google Scholar 

  27. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  28. Sekmen AH, Turkan I, Prometheus Wiki contributors (2011) Ascorbate peroxidase assay. Prometheus wiki, a wiki for protocols, methods, explanations and updated standards in ecological and environmental plant physiology, CSIRO publishing. http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Ascorbate+peroxidase+assay. Accessed 23 Apr 2012

  29. Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during arabidopsis rosette development. Anal Biochem 363:58–69

    Article  PubMed  CAS  Google Scholar 

  30. Wellburn AR (1994) The spectral determination of chlorophyll-a and chlorophyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  31. Bowsher CG, Tobin AK (2001) Compartmentation of metabolism within mitochondria and plastids. J Exp Bot 52:513–527

    Article  PubMed  CAS  Google Scholar 

  32. Speer M, Kaiser WM (1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol 97:990–997

    Article  PubMed  CAS  Google Scholar 

  33. Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. PNAS USA 92:11312–11316

    Article  PubMed  CAS  Google Scholar 

  34. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  35. Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  36. Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridization. Plant Mol Biol 33:821–834

    Article  PubMed  CAS  Google Scholar 

  37. Dabrowska G, Kata A, Goc A, Szechynska-Hebda M, Skrzypek E (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biol Cracov Bot 49:7–17

    Google Scholar 

  38. Ishikawa T, Sakai K, Takeda T, Shigeoka S (1995) Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett 367:28–32

    Article  PubMed  CAS  Google Scholar 

  39. Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem 275:16337–16344

    Article  PubMed  CAS  Google Scholar 

  40. Ishikawa T, Sakai YoshimuraK, Takeda T, Shigeoka S (1996) cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions. FEBS Lett 384:289–293

    Article  PubMed  CAS  Google Scholar 

  41. Mano S, Yamaguchi K, Hayashi M, Nishimura M (1997) Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett 413:21–26

    Article  PubMed  CAS  Google Scholar 

  42. Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2002) Identification of a cis element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants. J Biol Chem 277:40623–40632

    Article  PubMed  CAS  Google Scholar 

  43. Sharp KH, Mewies M, Moody PC, Raven EL (2003) Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat Struct Biol 10:303–307

    Article  PubMed  CAS  Google Scholar 

  44. Patterson WR, Poulos TL (1994) Characterization and crystallization of recombinant pea cytosolic ascorbate peroxidase. J Biol Chem 269:17020–17024

    PubMed  CAS  Google Scholar 

  45. Wada K, Tada T, Nakamura Y, Ishikawa T, Yabuta Y, Yoshimura K et al (2003) Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability. J Biochem 134:239–244

    Article  PubMed  CAS  Google Scholar 

  46. Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struc Biol 2:388–393

    Article  CAS  Google Scholar 

  47. Mandelman D, Schwarz FP, Li H, Poulos TL (1998) The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Prot Sci 7:2089–2098

    Article  CAS  Google Scholar 

  48. Macdonald IK, Badya SK, Ghamsari L, Moody PCE, Raven EL (2006) Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis. Biochem 45:7808–7817

    Article  CAS  Google Scholar 

  49. Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–234

    Article  PubMed  CAS  Google Scholar 

  50. Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ (2005) Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem 43:1082–1088

    Article  PubMed  CAS  Google Scholar 

  51. Lin KH, Lo HF, Lin CH, Chan MT (2007) Cloning and expression analysis of ascorbate peroxidase gene from eggplant under flooding stress. Bot Stud 48:25–34

    CAS  Google Scholar 

  52. Lin KH, Pu SF (2010) Tissue-and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biol Plant 54:664–670

    Article  CAS  Google Scholar 

  53. Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M et al (2004) A robot-based platform to measure multiple enzyme activities in arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  PubMed  CAS  Google Scholar 

  54. Khanna-Chopra R (2008) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma. doi:10.1007/s00709-011-0308-z

  55. Miyake C, Asada K (1996) Inactivation mechanism of ascorbate peroxide at low concentration of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxide. Plant Cell Physiol 37:423–430

    Article  CAS  Google Scholar 

  56. Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  PubMed  CAS  Google Scholar 

  57. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed  CAS  Google Scholar 

  58. Bergquist SÅM, Gertsson UE, Olsson ME (2006) Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). J Sci Food Agric 86:346–355

    Article  CAS  Google Scholar 

  59. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  PubMed  CAS  Google Scholar 

  60. Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  PubMed  CAS  Google Scholar 

  61. Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed  CAS  Google Scholar 

  62. Page T, Griffiths G, Buchanan-Wollaston V (2001) Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiol 125:718–727

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Joseph Sepe (University of Maryland University College), for improving the manuscript. This work has been supported by “Seconda Università degli Studi di Napoli”, “Ministero dell’Università”, “Ministero della Ricerca Scientifica e Tecnologica” of Italy (PRIN 2008S9T3KK_003), “Regione Campania, PSR 2007-2013 Misura 214 azione f2 progetto Agrigenet”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasqualina Woodrow.

Additional information

The nucleotide sequence data are deposited in GenBank Data Library under accession numbers: (HE574697–HE574700).

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_1627_MOESM1_ESM.tif

Figure S1. RT-PCR analysis of BrApx transcripts in Brassica rapa layer at 0d. M, molecular mass markers, 1, 2, 3, 4, BrApx1, BrApx2, Br-sApx and Br-tApx cDNA, respectively. (TIFF 112 kb)

11033_2012_1627_MOESM2_ESM.tif

Figure S2. Multiple alignments of the deduced amino acid sequences of Brassica rapa APX proteins. Dashes indicate gaps The N-terminal extensions of the chloroplastic BrAPXs and the C-terminal extensions of the chlAPXs were not included in the alignment. Dashed line followed by slash indicates the omitted N-terminal; slash followed by dashed line indicates the omitted C-terminals. Asterisks denote the deduced termination of the proteins. Red-font letters indicate the conserved residues of the catalytic site [43, 45] including Arg172 [48]. Turquoise-font letters indicate the cation–ligand residues [13, 45]. Violet-font letters indicate the amino acid residues involved in the electrostatic interactions between subunits. Green-font letters indicate the amino acid residues that are involved in the active site of the proteins which binds the ascorbate, residues for the ligand heme and site substrate binding [43]. Yellow indicate identical residues, in the same positions. (TIFF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodrow, P., Fuggi, A., Pontecorvo, G. et al. cDNA cloning and differential expression patterns of ascorbate peroxidase during post-harvest in Brassica rapa L.. Mol Biol Rep 39, 7843–7853 (2012). https://doi.org/10.1007/s11033-012-1627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1627-7

Keywords

Navigation