Skip to main content
Log in

Determination of the specific interaction between palmatine and bovine serum albumin

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The binding of palmatine to bovine serum albumin (BSA) was studied under physiological conditions (pH = 7.40) by molecular spectroscopic approach. It was proved that the fluorescence quenching of BSA by palmatine is a result of the formation of palmatine–BSA complex. Binding parameters were determined using the modified Stern–Volmer equation and Scatchard equation, to measure the specific binding between palmatine and BSA. The thermodynamic parameters calculated, ∆G°, ∆H° and ∆S° indicate that the electrostatic interactions play a major role in the palmatine–BSA association. Site marker competitive displacement experiments demonstrated that palmatine binds with specific affinity to site II (subdomain IIIA) of BSA. Furthermore, the specific binding distance r (3.36 nm) was obtained according to fluorescence resonance energy transfer. The results of synchronous fluorescence spectra and UV–Visible absorption spectra show that the conformation of bovine serum albumin has been changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu YJ, Chen CH, Zhou S, Bai AM, Ou-Yang Y (2011) The specific binding of chlorogenic acid to human serum albumin. Mol Biol Rep. doi:10.1007/s11033-011-1036-3

  2. Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010) Binding of berberine to bovine serum albumin: spectroscopic approach. Mol Biol Rep 37:3827–3832

    Article  PubMed  CAS  Google Scholar 

  3. Zhang YZ, Dai J, Xiang X, Li WW, Liu Y (2010) Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods. Mol Biol Rep 37:1541–1549

    Article  PubMed  CAS  Google Scholar 

  4. Lázaro E, Lowe PJ, Briand X, Faller B (2008) New approach to measure protein binding based on a parallel artificial membrane assay and human serum albumin. J Med Chem 51:2009–2017

    Article  PubMed  Google Scholar 

  5. Akdogan Y, Junk MJN, Hinderberger D (2011) Effect of ionic liquids on the solution structure of human serum albumin. Biomacromolecules 12:1072–1079

    PubMed  CAS  Google Scholar 

  6. Froehlich E, Mandeville JS, Jennings CJ, Sedaghat-Herati R, Tajmir-Riahi HA (2009) Dendrimers bind human serum albumin. J Phys Chem B 113:6986–6993

    Article  PubMed  CAS  Google Scholar 

  7. Guo XJ, Hao AJ, Han XW, Kang PL, Jiang YC, Zhang XJ (2011) The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38:4185–4192

    Article  PubMed  CAS  Google Scholar 

  8. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  9. Carter DC, Chang B, Ho JX, Keeling K, Krishnasami Z (1994) Preliminary crystallographic studies of four crystal forms of serum albumin. Eur J Biochem 226:1049–1052

    Article  PubMed  CAS  Google Scholar 

  10. Olson RE, Christ DD (1996) Plasma protein binding of drugs. Ann Rep Med Chem 31:327–336

    Article  CAS  Google Scholar 

  11. Sudlow G, Birkett DJ, Wade DN (1975) Characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    PubMed  CAS  Google Scholar 

  12. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    PubMed  CAS  Google Scholar 

  13. Wanwimolruk S, Birkett DJ, Brooks PM (1983) Structural requirements for drug binding to site II on human serum albumin. Mol Pharmacol 24:458–463

    PubMed  CAS  Google Scholar 

  14. Schmeller T, Latz-Brüning B, Wink M (1997) Biochemical activities of berberine, palmatine, and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257–266

    Article  PubMed  CAS  Google Scholar 

  15. Kong WJ, Zhao YL, Xiao XH, Li ZL, Ren YS (2009) Action of palmatine on Tetrahymena thermophila BF5 growth investigated by microcalorimetry. J Hazard Mater 168:609–613

    Article  PubMed  CAS  Google Scholar 

  16. Yan D, Jin C, Xiao XH, Dong XP (2008) Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J Biochem Biophys Methods 70:845–849

    Article  PubMed  Google Scholar 

  17. Küpeli E, Koşar M, Yeşilada E, Başer KHC, Başer C (2002) A comparative study on the anti-inflammatory, anti-nociceptive, and anti-pyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci 72:645–657

    Article  PubMed  Google Scholar 

  18. Chao J, Lu TC, Liao JW, Huang TH, Lee MS, Cheng HY, Ho LK, Kuo CL, Peng WH (2009) Analgesic and anti-inflammatory activities of ethanol root extract of Mahonia oiwakensis in mice. J Ethnopharmacol 125:297–303

    Article  PubMed  CAS  Google Scholar 

  19. Singh J, Kakkar P (2009) Anti-hyperglycemic and anti-oxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. J Ethnopharmacol 123:22–26

    Article  PubMed  Google Scholar 

  20. Kim YM, Ha YM, Jin YC, Shi LY, Lee YS, Kim HJ, Seo HG, Choi JS, Kim YS, Kang SS, Lee JH, Chang KC (2009) Palmatine from Coptidis rhizoma reduces ischemia-reperfusion-mediated acute myocardial injury in the rat. Food Chem Toxicol 47:2097–2102

    Article  PubMed  CAS  Google Scholar 

  21. Yu Y, Yi ZB, Liang YZ (2007) Main antimicrobial components of Tinospora capillipes, and their mode of action against Staphylococcus aureus. FEBS Lett 581:4179–4183

    Article  PubMed  CAS  Google Scholar 

  22. Li J, Shuang S, Dong C (2009) Study on the phosphorescence characterizations of palmatine chloride on the solid substrate and its interaction with ctDNA. Talanta 77:1043–1049

    Article  PubMed  CAS  Google Scholar 

  23. Islam MdM, Kumar GS (2008) RNA targeting by small molecule alkaloids: studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium. J Mol Struct 875:382–391

    Article  CAS  Google Scholar 

  24. Islam MdM, Chowdhury SR, Kumar GS (2009) Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J Phys Chem B 113:1210–1224

    Article  PubMed  CAS  Google Scholar 

  25. Hirakawa K, Hirano T (2008) The microenvironment of DNA switches the activity of singlet oxygen generation photosensitized by berberine and palmatine. Photochem Photobiol 84:202–208

    PubMed  CAS  Google Scholar 

  26. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  27. Lehrer SS (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  28. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  29. Timaseff SN (1972) Thermodynamics of protein interactions. In: Peeters H (ed) Proteins of biological fluids. Pergamon, Oxford

    Google Scholar 

  30. Lu Y, Wang GK, Lu XM, Lv J, Xu MH, Zhang WW (2010) Molecular mechanism of interaction between norfloxacin and trypsin studied by molecular spectroscopy and modeling. Spectrochim Acta A 75:261–266

    Article  Google Scholar 

  31. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  32. Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010) Site-selective binding of human serum albumin by palmatine: spectroscopic approach. Biomacromolecules 11:106–112

    Article  PubMed  CAS  Google Scholar 

  33. Hu YJ, Ou-Yang Y, Bai AM, Li W, Liu Y (2010) Investigation of the interaction between ofloxacin and bovine serum albumin: spectroscopic approach. J Solution Chem 39:709–717

    Article  CAS  Google Scholar 

  34. Yang JY, Yang WY (2009) Site-specific two-color protein labeling for FRET studies using split inteins. J Am Chem Soc 131:11644–11645

    Article  PubMed  CAS  Google Scholar 

  35. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562–4588

    Article  CAS  Google Scholar 

  36. Matei I, Hillebrand M (2010) Interaction of kaempferol with human serum albumin: a fluorescence and circular dichroism study. J Pharm Biomed Anal 51:768–773

    Article  PubMed  CAS  Google Scholar 

  37. Hu YJ, Liu Y, Pi ZB, Qu SS (2005) Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg Med Chem 13:6609–6614

    Article  PubMed  CAS  Google Scholar 

  38. Xu JG, Wang ZB (2006) Fluorescence analytical method, 3rd edn. Science, Beijing

    Google Scholar 

  39. Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–208

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged financial support of National Natural Science Foundation of China (No. 20803019), Natural Science Foundation of Hubei Province, China (No. 2010CDB00101), and Hubei Normal University Foundation, China (No. 2007F10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou-Yang, Y., Li, XL., Wang, H. et al. Determination of the specific interaction between palmatine and bovine serum albumin. Mol Biol Rep 39, 5495–5501 (2012). https://doi.org/10.1007/s11033-011-1352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1352-7

Keywords

Navigation